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The quantity of literature in the biomedical domain is growing exponentially. It
is becoming impossible for researchers to cope with this ever-increasing amount of
information. Text mining provides methods that can improve access to information of
interest through information retrieval, information extraction and question answering.
However, most of these systems focus on information presented in main body of text
while ignoring other parts of the document such as tables and figures.

Tables present a potentially important component of research presentation, as au-
thors often include more detailed information in tables than in textual sections of a
document. Tables allow presentation of large amounts of information in relatively lim-
ited space, due to their structural flexibility and ability to present multi-dimensional
information.

Table processing encapsulates specific challenges that table mining systems need
to take into account. Challenges include a variety of visual and semantic structures
in tables, variety of information presentation formats, and dense content in table cells.
The work presented in this thesis examines a multi-layered approach to information
extraction from tables in biomedical documents.

In this thesis we propose a representation model of tables and a method for table
structure disentangling and information extraction. The model describes table struc-
tures and how they are read. We propose a method for information extraction that
consists of: (1) table detection, (2) functional analysis, (3) structural analysis, (4) se-
mantic tagging, (5) pragmatic analysis, (6) cell selection and (7) syntactic processing
and extraction. In order to validate our approach, show its potential and identify re-
maining challenges, we applied our methodology to two case studies. The aim of the
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first case study was to extract baseline characteristics of clinical trials (number of pa-
tients, age, gender distribution, etc.) from tables. The second case study explored
how the methodology can be applied to relationship extraction, examining extraction
of drug-drug interactions.

Our method performed functional analysis with a precision score of 0.9425, recall
score of 0.9428 and F1-score of 0.9426. Relationships between cells were recognized
with a precision of 0.9238, recall of 0.9744 and F1-score of 0.9484. The information
extraction methodology performance is the state-of-the-art in table information extrac-
tion recording an F1-score range of 0.82-0.93 for demographic data, adverse event and
drug-drug interaction extraction, depending on the complexity of the task and available
semantic resources.

Presented methodology demonstrated that information can be efficiently extracted
from tables in biomedical literature. Information extraction from tables can be impor-
tant for enhancing data curation, information retrieval, question answering and deci-
sion support systems with additional information from tables that cannot be found in
the other parts of the document.
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Chapter 1

Introduction

Throughout history, presenting information in tabular formats has been a significant
feature of the written language. Archaeologists have uncovered tabular structures dat-
ing back to the Bronze Age (3500BC-1600BC) in Mesopotamia and Crete. In the
ancient Mesopotamian city of Uruk, horizontal and vertical lines were carved on clay
tablets to separate distinct zones of meaning (Dilger & Rice 2010). The example of
Mesopotamian tablet can be seen in Figure 1.1. In the Minoan civilization in Crete,
there are table-like structures on tablets for games, but some of them presented infor-
mation that was probably recorded by bureaucrats (Whittaker 2013). Ancient Egyp-
tians used hierarchical structuring of tablets or pergaments in such a way that the top
part presented images of the divine world, the second part presented images from the
ruler’s life, while on the bottom were images of enemies (Dilger & Rice 2010). Tables,
as we know them today, were developed about 4600 years ago, already in the days of
handwritten documents, and usually used for bureaucratic records, such as recording
the number of workers in a workplace (Long 2010). The modern English word ”ta-
ble” originates from the Latin ”tabula”, meaning ”a board, plank; writing table; list,
schedule; picture, painted panel,” originally ”small flat slab or piece” usually used for
inscriptions or for games (Hoad 1993). In the 15th century, tables could be found
in many publications in mathematics and natural sciences (Smith & Ginsburg 1937).
Throughout the history, tables had an important place in presenting data in written doc-
uments and with the new typesetter tools that made the creation of tables easier, their
role increased (Long 2010). Today, tables are used in a variety of documents, but they
are prominent in scientific literature.

Tables are used as an appropriate format for storing a potentially large amount
of factual or statistical data in a structured way, in particular multidimensional data.
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Figure 1.1: An example of Mesopotamian tablet quoting in the tabular structure the
wages of different categories of workers (circa 2350 BC)

Various table layouts provide flexibility for structuring data and for storing information
in a compact way. If the body of the article is referred to as unstructured text, tables
are semi-structured textual parts of the article.

Tables have two main uses: to present data and to present a short parallel descrip-
tion in a compact and structured way that otherwise would have to be expanded and
listed in the text (Alley 1996). An example of the table presenting parallel descrip-
tions can be seen in Figure 1.2. Had the authors wished to present this data in the text
body, they would have been required to repetitively expound on their otherwise concise
description.

In the textual parts of the document, authors may discuss or highlight important
findings from the data, but they will usually not repeat the data presented in the table.
Figure 1.3 shows an example of a table presenting numeric data that are not mentioned
in the textual part of the document. The mention of this table in the article says the
following: ”Table 2 shows the total respiratory heat changes of the ventilated gases

with the three systems used for conditioning of ventilatory gases. Total respiratory

heat loss was significantly less with the HH than with either HME (P<0.01)” (PMC
29053). The article highlights the significant difference in table’s data and discusses
it, but does not mention the numerical values. Tables present important features of the
documents for presenting information and therefore cannot be ignored.
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Figure 1.2: Example of a table showing parallel description in structured and compact
way (PMC 31582)

1.1 Table terminology and elements

The Oxford English Dictionary defines a table as: ”an arrangement of numbers, words
or items of any kind, in a definite and compact form, so as to exhibit some set of facts or
relations in a distinct and comprehensive way, for the convenience of study, reference,
or calculation”.

A table is considered information bearing element of the document, usually char-
acterized by grid-like appearance. It is a static element of the document that presents
information and should not be altered by the reader (unlike for example form). A ta-
ble is presenting information to the reader by organising a set of meaningful elements
on the page so the relationships between those elements, and the manner in which
combinations of elements interact, is demonstrated to the reader (Hurst 2000). Some
information in the table is assumed by the author to be known to the user. This informa-
tion is then used to introduce new information and relationships between information
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Figure 1.3: Example of table with data that is not mentioned later in text. Table taken
from (PMC 29053)

to the reader. Tables are usually not interpreted on their own, but rather with other
presented information within textual part of the document, including table description,
that makes the context of the table.

Basic table element is cell. Cell is the basic grouping within a table. Cells usually
contain only one value, word, phrase or concept and are divided by horizontal and ver-
tical lines. Column is a set of vertically aligned table cells. Row is a set of horizontally
aligned table cells.

With respect to structural function, there are three types of table elements:

• Table descriptors, which textually describe the table and its data and often pro-
vide the table data context. These include table captions and footers.

– Title or caption describes the table content and subject.

– Footer provides more detailed information about the table and is usually
placed below the table. Footer often presents the legend for symbols used
in the table or observations about the table data.

• Navigational (access) cells describe and label data cells. Headers, stubs and
super-row cells are referred together as navigational cells.
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– Header (column header) is usually top-most row (or set of multiple top-
most rows) of a table and defines the columns’ data. In some cases, header
does not have to be in the top-most rows, however, it still defines and cate-
gorizes columns’ data bellow it (e.g. in multi-tables).

– Sub-header or super-row creates an additional dimension of the table and
additionally, describes table data. The sub-header row is usually placed
between data rows, separating them by some dimension or concept.

– The stub (row header) is typically the left-most column of the table, usu-
ally containing the list of subjects or instances to which the values in the
table body apply.

• Table body (data cells) contains the table’s data. Data cells are placed in the
body of the table. Cells in the body represent the value of things (variables) or
the value of relationship defined in headers, sub-headers and stub.

Described table elements are presented in Figures 1.4 and 1.5.

Figure 1.4: Table elements: Header, stub and body. Table example source: Yildiz et al.
(2005)

Wright produced notable work examining the ease of use of different types and
layouts of tables, defining table types by their dimensionality and the way information
is presented (Wright 1968, Wright & Fox 1970, Wright 1977). From the dimension-
ality perspective, Wright defined list tables (one-dimensional tables, containing only
the list of items in the table) and matrix tables (containing two dimensions and data
arranged in the matrix) (Wright 1968). From the way of the presenting information
perspective, Wright differentiate between explicit and implicit tables. An explicit table
has information presented in an explicit way, while an implicit table is a table in which
a reader has to do something more than just to look for an item (e.g. a reader needs to
calculate the value of money in a different currency using the exchange rate presented
in the table). From the ease of use perspective, Wright showed that explicit tables are
much easier to read than implicit tables. She showed that tables could be quite hard
for humans to read and that the easiest tables are explicit list tables. If the values are
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Figure 1.5: Elements of complex table (PMC 29053)

not explicit and the person had to perform additional cognitive processes to find or
calculate the value of interest, the probability of mistakes increases and reading speed
decrease. Understanding how to use two or multi-dimensional tables proved to be
challenging (Wright 1977). However, it improves with training and learning (Wright
1968).

Wright’s experiments showed that making columns within a table readably distin-
guishable does aid the user. A set of her experiments showed that abbreviations and
acronyms in table cells are hindrances and they make table more difficult to read. One
of the conducted experiments showed that reading was faster and errors were fewer
with the vertical as compared to horizontal tables (Wright & Fox 1970).

Generally, Wright’s research shows that tables are complex structures for humans
to understand and the more cognitive operation a user has to perform while reading it,
the more a user’s reading will be slow and error prone.

1.2 Tables in biomedical literature

The number of published biomedical research papers is growing exponentially (see
Figure 1.6). MEDLINE, a database of biomedical citations, contains over 27 million
references from approximately 5,600 journals in 30 languages. In 2015, over 806,000
new citations were added to MEDLINE database1. On average, over 2,200 scientific

1https://www.nlm.nih.gov/bsd/stats/cit_added.html
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Figure 1.6: Number of published articles by year that are indexed in MEDLINE

papers are published every day in the biomedical domain. It is impossible for the sci-
entists and professionals, who need to keep track with the state-of-the-art in the field,
to cope with this amount of published research. Text mining and natural language pro-
cessing can provide the means to explore this enormous amount of knowledge. The
aim of text mining is to process, extract and curate relevant information from the lit-
erature. In recent years, a notable progress have been made in biomedical text mining
(Cohen & Hersh 2005, Allahyari et al. 2017, Kilicoglu 2017). Text mining can assist
with recognising named entities (finding names of diseases, genes, proteins, etc.), link-
ing related entities (finding drug-drug interactions, protein-protein interaction, adverse
events to a drug, etc.), text classification (e.g. classify the field of study), retrieving rel-
evant texts or answer questions. However, text mining methods typically ignore lists,
tables, and figures. On the other hand, tables are one of the main means of present-
ing data in scholarly articles. As it can be seen from the example presented in Figure
1.7, tables usually present complementary information to the information presented
in the text, but usually there is no repetition. Some information (e.g. experimental
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settings, definition of scales, detailed results of the experiments) is presented only in
tables (Abeel et al. 2010) and this information would be lost if not processed. Many of
these are key information for reproducing, repeating and understanding the presented
research. Such information needs to be integrated with other information extracted
from research literature, otherwise the meaning can be lost or misrepresented. In order
for text mining to be useful, it is necessary for text mining systems to process all com-
ponents of a research paper in order to gather the same information as a human reader
from the same document. Due to tables in the literature and the information stored in
them being important for understanding of the literature as a whole, table processing
needs to be one of the key components of literature text mining methodologies.

Figure 1.7: Excerpt of the article presenting table and its reference from the text.
Text and tables often present complementary, but not redundant information. Infor-
mation presented in the text are addition to the information presented in the table
(PMC113263)

In the PMC database, a database of open access publications in the biomedical
domain, more than 72% of research articles, available in XML, contain tables. On av-
erage there are 3.1 tables per document, with 80 cells on average. Similarly, drug labels
presented in the DailyMed database, maintained by the National Library of Medicine,
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contain, on average, 4.1 tables. The statistics detailed here, strongly support the argu-
ment that tables are used frequently in the biomedical field.

Tables may appear in various domains and play important role in disseminating in-
formation. Table structures are domain independent, however, the content of the table
is domain dependent. Certain steps of table processing may be domain-independent,
however, in order to fully understand information presented in a table and perform
information extraction, it is necessary to have background information on the given
domain. Tasks, such as information extraction and knowledge acquisition require
domain-specific knowledge sources. Domain-specific vocabularies, topologies, and
ontologies can significantly contribute to extracting the relevant information. It was
quite extensively invested in developing knowledge resources in the biomedical do-
main, such as UMLS, SNOMED, PubMed, ATC, etc. (Li et al. 2017, Moore & Holmes
2016, Ofoghi et al. 2014). These resources can be integrated with each other and used
to annotate raw text data, which proved to be helpful for information extraction and
other semantic processing of textual data. Since semantic resources are well estab-
lished and developed in the biomedical domain, this domain can be used in order to
evaluate and test table information extraction methodology. Biomedical researchers
can also benefit from text and table processing, which can result in better treatments
and more rapid research on drugs.

Research in table processing was focused on detecting tables in various document
formats (Ng et al. 1999, Yildiz et al. 2005, Son et al. 2008) and detecting functional
areas (headers, stubs, super-rows and data cells) in tables (Tengli et al. 2004, Silva
2010, Jung & Kwon 2006). Some research has also been done to support table in-
formation retrieval (Hearst et al. 2007, Liu 2009), knowledge discovery (Wong et al.
2009), information extraction (Embley et al. 2005, Mulwad et al. 2013) and question
answering (Sun et al. 2016). However, most of these studies are limited to the certain
set of standardised tables.

Currently, there is lack of concentrated effort to develop a methodology for table
mining (consolidating all steps of table processing and information extraction from
tables) that can complement text mining methods. The work presented in this the-
sis focuses on developing a methodology for information extraction from tables in
biomedical documents. Biomedical domain was selected because certain parts of in-
formation extraction methodology require domain knowledge. Biomedical domain is
one of the most vibrant research domain, contributing to the welfare, health and quality
of life of people around the world.
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1.3 Challenges in automated table processing

Tables store information in a semi-structured manner. They may contain both numeric
and textual information, including whole sentences and paragraphs. Processing indi-
vidual tabular cell content presents, at least, similar challenges to processing textual
information. However, since tables structure information within their own perimeters
and rely on visual relationships between tabular cells, they pose additional challenges.
These challenges include:

Table detection. In many types and formats of documents this task can be challeng-
ing (eg. ASCII free text or PDF). The recognition of tables in documents can be either
a research goal in its own right, or the first step in an integrated system such as those
created for information extraction or information retrieval (Hurst 2000).

Representation for visualization. Tables are primarily used in a way that data can
be easily viewed. Most methods and languages that support describing tables, includ-
ing XML, HTML or LaTex, are designed with the focus on visualisation. In mark-up
languages, tables contain a lot of information about what a table should look like (see
Figure 1.8), but very little about how the table entries relate (Thompson 1996, Hurst
& Douglas 1997). Since the focus is on visualisation and visual representation, a table
author only needs to focus on the visual appearance of the table, ignoring description
of the functions of areas or relationships. Therefore, reading and computational analy-
sis of tables described in this manner require a method that is able to disentangle visual
structure before further analysis.

Variety of tables structural layouts and visual relationships. There is no ”com-

mon” table structure. The combination of cell arrangement, their spanning, content,
and function (headings or data) determine how the table is read and understood. Cells
can span over several other cells both horizontally and vertically. Some of the ex-
amples of tabular structures are presented in Figure 1.9. Cells in a table are visually
related, presenting multiple dimensions and annotations of the data, in contrast to lin-
ear textual information. Tables are flexible in their structure, providing authors with
means to shape them according to their data presentation needs. Table structure makes
automated detection of functional areas (functional analysis of table) and resolving
inter-cell relationships (structural analysis of table) challenging. Table layouts and
their visual relationships are not specific to any domain. Complex tables can be found
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Figure 1.8: Example of XML representation and its visualisation (PMC113263)

in any domain. However, domain specific knowledge is useful for detecting functional
areas or resolving relationships within the table. Evaluation and creation of new ma-
chine learning-based approaches to disentangle visual layouts will be simplified if gold
standard annotated corpora existed. Several annotation schemas have been proposed
for annotating textual resources and over the time they have been standardised. At the
moment there is almost no commonly accepted annotation schema for tables, neither
research on how table content should be annotated, while preserving the structure and
relationships between the cells.

Figure 1.9: Examples of some possible structures of tables
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Use and integration of biomedical knowledge sources. In biomedical domain, there
are well-established semantic resources that can help information extraction. These re-
sources are in form of vocabularies, topologies and ontologies. In order to positively
contribute to the information extraction task, these resources have to be used and inte-
grated correctly. The use of semantic resources for information extraction from tables
in biomedical research is in its beginnings, and it is challenging to select and integrate
correctly resources that will help with extracting the variables of interest. The inte-
gration of semantic resources has to deal with the specifics of the given resource, but
also to take into account the visual and structural relationships between the cells in the
table.

Variety of value presentation formats. Values in cells can be presented using vari-
ous syntactic representation formats. While some authors may present mean and stan-
dard deviation in one cell using the plus-minus (±) sign (i.e. 12± 2), some will use
brackets (i.e. 12(2)) and some will use two separate cells. Extraction of these val-
ues requires knowledge of possible value presentation patterns article authors most
frequently use in tables. The value presentation formats may be different in differ-
ent research domains. Often same representation format can be used for presenting
different things in different domains. For example, presentation, such as 12± 2, in
biomedical literature would usually indicate mean or median with standard deviation,
while in computer science domain it may be often used for mean and standard error.

The goal of table mining is to make table information easily accessible and to inter-
pret tables automatically. The process of making published information from literature
in various sources structured, managed, searchable and easily accessible in the future,
while maintaining value, is commonly referred as data curation (Choudhury 2008). If
done manually, data curation is a laborious and expensive task. Automated or assisted
curation can speed up curation process by more than 70% and help make information
computationally interpretable (Alex et al. 2008).

In order to successfully process table and extract information from them, these
challenges need to be addressed.

1.4 Hypothesis and research questions

The main hypothesis explored in this thesis is whether a multi-layered approach to
mining information from tables can facilitate large-scale semi-automated extraction
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and curation of data stored in tables in the biomedical domain. Specifically, we will
aim to answer the following research questions:

1. What levels of processing are needed to disentangle table’s internal structure
from its visual representation? What levels of processing are necessary for ex-
tracting information from tables?

2. What information and knowledge about data is necessary in order to design and
implement information extraction from tables?

3. What levels of table processing would benefit from rule-based approaches rather
than machine-learning, given the typical short text available in tables?

4. How can table information extraction benefit from domain specificity? Which
steps of the methodology are domain dependant and which ones are domain
independent?

5. Can the surrounding text that refers to a table help in interpreting the table’s
data?

6. What levels of accuracy would facilitate efficient data curation on a large-scale
to support information extraction?

To demonstrate and validate the approach, we will perform two case studies. In
the first case study, we will focus on the clinical trials literature, where tables are
often used to present data that detail a trial’s settings and outcomes. In the second
case study, we will examine whether the developed methodology can be applied for
extracting drug-drug interaction from drug label documents.

1.5 Scope

The general scope of this thesis is to investigate a table information extraction method-
ology in the biomedical domain. Mainly, the aim was to develop a methodology that
can be applied for extracting numerical and categorical information from the biomed-
ical literature. Literature mining is important because new research and knowledge is
reported in it. However, because of the large amount of published literature, it is nec-
essary to allow easy access to the knowledge using text and table mining. We mainly
focus on clinical trial documents as a sub-domain of the biomedical literature. The
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clinical trial literature is one of the most relevant sub-fields for drug discovery and dis-
ease treatment research (Lalnunpuii 2013). Tables in clinical trial documents may give
a valuable insight into general characteristics of a clinical trial such as demographics
of the participants, trial arms, names and the side effects of the tested drugs. Clinical
trial documents may also contain information about interactions between biomedical
substances, such as drug-drug or protein-protein interactions. Clinical trial literature
consists of traditional publications and therefore this dataset was used for initial vali-
dation of the methodology.

The second biomedical literature sub-domain on which we have evaluated our
methodology is the drug label documents, on which we will present a case study
demonstrating extraction of drug-drug interactions that are often represented in tables.
In the United States, companies are required by law to report potential drug-drug inter-
actions on product labels. The drug labels are presented in a different format and since
it is a different dataset, tables may have specific features and challenges that have to
be overcame. Because of the differences between these dataset DailyMed was used to
evaluate generalizability of the methodology

Biomedical documents are published in a number of formats, including HTML,
XML, and PDF. Most well known biomedical domain databases, such as MEDLINE,
PMC and DailyMed, keep their documents in an XML format. Our focus therefore is
the processing of biomedical documents in the XML format. For other common for-
mats in literature, such as PDF, there are a number of tools for converting documents
into XML, such as pdf2xml, pdftohtml, pdfextract, SectLabel, PDFX and easyPDF
SDK (Constantin 2014). These tools might be used more or less successfully in a
preparatory step for the PDF format. More specifically, we use clinical trial articles
from the PMC database for the experiments and evaluations related with clinical do-
main and drug labels from DailyMed database for experiments and evaluations related
with drug-drug interaction from drug labels case study.

1.6 Contributions

The research presented in this thesis has made the following contributions:

• A model of tables and articles that is suitable for table mining, annotation and
curation, making tables structured and machine readable, while preserving all
necessary information and annotations.
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• A method for automated disentangling of table structure. The method that is
presented in this thesis covers a wide range of table structures. Disentangling
of different table structures makes our information extraction method the first
end-to-end methodology for information extraction from tables.

• A step-by-step, end-to-end methodology for extracting information from tables
in scientific literature (with the main focus on biomedicine). The methodology
has multiple layers, including disentangling the structure of tables, annotating
functional areas in the tables, resolving inter-cell relationships, classifying ta-
bles by their pragmatics, semantics and finally, extracting information based on
manually crafted lexical cues and syntactic rules.

• Modelled common value presentation patterns for the most common numerical
variables and created a reusable library of patterns with the semantic mapping of
the values.

• A method and reusable rule sets for extraction of baseline characteristics from
clinical trial publications and drug-drug interactions from structured drug labels.
By doing these case studies, we devised, to the best of our knowledge, the first
method for extracting this information from tables.

The described methodology for table disentangling and information extraction are
available as open source tools called TableDisentangler2 and TableInOut3, which are
published under GNU General Public Licence (GPL) v3.

Publications and presentations

Parts of the work presented in the thesis have been published in the following papers:

1. Milošević, N., Gregson, C., Hernandez, R. and Nenadić, G., 2016, June. Dis-
entangling the Structure of Tables in Scientific Literature. In International Con-
ference on Applications of Natural Language to Information Systems (pp. 162-
174). Springer International Publishing. DOI: 10.1007/978-3-319-41754-7 14

2. Milošević N., Gregson C., Hernandez R. and Nenadić G. (2016). Extracting
Patient Data from Tables in Clinical Literature - Case Study on Extraction of
BMI, Weight and Number of Patients. In Proceedings of the 9th International

2https://github.com/nikolamilosevic86/TableDisentangler
3https://github.com/nikolamilosevic86/TabInOut
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Joint Conference on Biomedical Engineering Systems and Technologies ISBN
978-989-758-170-0, pages 223-228. DOI: 10.5220/0005660102230228

3. Milošević N., Gregson C., Hernandez R. and Nenadić G. (2016). Hybrid method-
ology for information extraction from tables in the biomedical literature. In Pro-
ceedings of Belgrade BioInformatics conference – BelBi 2016, pages 74–78,
ISBN: 978-86-7589-108-6

Parts of the work from this thesis were also presented in the following confer-
ences/events (abstracts):

• Poster: Extraction of drug-drug interactions from drug product labeling tables

presented at AMIA Joint Summits in San Francisco, March 27 - 30, 2017

• Poster: Supporting clinical trial data curation from literature using table mining

– presented at the Postgraduate Summer Research Showcase at the University of
Manchester, June 2015

• Oral presentation: Supporting clinical trial data curation and integration with

table minig, presented at FARR Institute International Conference on Data In-
tensive Health Research and Care in St. Andrews, August 2015

1.7 Thesis structure

The thesis has been organised into nine chapters. The background research review of
the field of table mining and table understating that was conducted so far is presented
in the next chapter. The third chapter (Methodology Overview) gives a brief overview
of the models and methodology presented in this thesis. The fourth chapter gives a
detailed explanation of the model of tables, including the data model for persevering
and curating tables. The same chapter also discusses details on functional analysis of
tables and structural analysis of relationships between cells. Chapter 5 presents prag-
matic table analysis and semantic tagging of the table content. In the Chapter 6, we
examine and compare two possible approaches for cell selection (machine learning-
based and heuristic-based approach) and syntactic analysis of the cell content. At the
end of this chapter, we generalise the findings into a framework and multi-layered
methodology for information extraction. The seventh chapter presents two case stud-
ies of information extraction from tables using the previously described framework.
The eighth chapter discusses the models, the approaches presented and answers the
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research questions. The last chapter concludes the thesis and gives an outline of the
future research.



Chapter 2

Review of table mining literature

Tables have been studied from various perspectives, including their creation and edit-
ing (Wang & Wood 1993, Long 2010), ergonomics, table models and mining. In this
chapter, we review research describing the proposed models of tables and automated
processing methodologies, such as table detection, functional table analysis, table in-
formation retrieval, information extraction, knowledge discovery and question answer-
ing.

2.1 Table description models

Tables are viewed and manipulated for several different purposes (i.e. creating/editing,
reading, mining). This have led to the specific models that give an insight about im-
portant tables characteristics from these viewpoints. A table model is a representation
of organisation (layout), structure and content of tables.

Tables can be considered at three levels of description: abstract, physical and logi-
cal (Long 2010).

• The abstract level encapsulates the communicative intent of the author (i.e.
relationships between the data) (Wang & Wood 1993).

• The physical level consists of pixels, lines, and text located in documents or
other display devices. They are referred to as layout structures of tables (Haralick
1994, Hurst 1999).

• The logical level describes the arrangement and content of the table elements.
Tables at the physical level are usually described and created on a logical level

37
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using some descriptive language, such as HTML, XML or LaTeX (Haralick
1994, Nagy 2000, Wang & Wood 1993).

There may be a number of models for each table description level. At the abstract
level, tables can be viewed as a set of functions associating labels in a table (Long
2010). The label was defined by Wang & Wood (1993) as the access cell, which was
later adopted by other authors in the area. The abstract level of description is usually
used for a linear table representation and access. It can be used for both creation and
mining. Wang & Wood (1995) defined an abstract model for table editing and for-
matting using mathematical and logical representations and operators. Similar models
were discussed by other authors (Embley et al. 2006, Douglas et al. 1995, Hurst &
Douglas 1997). Some authors refer to this form of tables as canonical forms (Embley
et al. 2006).

At the logical level, tables can be modelled by trees, graphs, grids and hierarchies.
Wang and Wood’s model keeps the logical structure of multi-dimensional tables by
defining a table item as a node in the tree. Each data cell is represented as a leaf node of
the tree, identified by the sequence of nodes representing access cells or labels (Wang
& Wood 1993). Nagy & Seth (1984) represented tables as X-Y trees. An X-Y tree is
a top-down method for page layout analysis. The basic assumption is that layout ele-
ments are generally laid out in a rectangular blocks. Blocks are grouped and adjutant
to each other, having one dimension in common. The document is split into successive
smaller blocks by making cuts along white space areas. The result can be presented in
a tree where the root is the whole document, while nodes represent smaller blocks of
the document (Cesarini et al. 1999). Nagy and Seth’s X-Y cut algorithm uses recursion
to split tables by alternating horizontal and vertical cuts along the column and row de-
limiters. The graph model directly encodes geometric relationships between the cells.
Cells are represented as vertexes with an edge between neighbouring cells (Amano &
Asada 2002, 2003). The type of edge represents the relationships between cells (e.g.
adjutant cells, spanning cells with different height, etc.). Alternatively, a grid, where
spanning cells are split into the size of the smallest cell in the table and content is typ-
ically copied into newly formed split cells, can also represent tables. By doing so, the
table is represented as a perfect grid. Cells that were split are called virtual cells, while
the original cells are called real cells (Ramel et al. 2003). This model is usually used
for processing, rather than table visualisation since it simplifies the structure without
modifying data. However, it modifies the original, visual representation of the table.

A number of table description models at the logical level have been standardised.
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The Organization for the Advancement of Structured Information Standards (OASIS)
created a standard to represent tables in SGML/XML documents called the CALS
Model (Bingham 1995). The CALS model was designed to handle a variety of mil-
itary technical documents. It allows encoding of geometric and formatting features
such as cell alignment, borders, and cell orientation. It also allows for splitting tables
into multiple sections, such as the heading area, the body area and the footer area with
the use of specific tags. It also allows naming cells, columns and rows, so they can be
referred to not only by indexes but also by a name. However, ambiguities were identi-
fied in CALS’ semantic representation, which led to several interoperability problems
between the vendors (Severson & Bingham 1995). As the industry moved in 1998 to-
wards the XML format, OASIS switched its focus to this format, incorporating certain
elements of the CALS table model standard (Walsh 1999) to the XML, which became
the most popular format for table serialisation, since it allows encoding the geometric
structure, as well as functions of table’s entities (Zanibbi et al. 2004). Also, it allows
easy transformation to HTML which is suitable for visualisation and higher level pro-
cessing (Hurst 2003). The example of XML table representation can be seen in Figure
2.1.

Figure 2.1: XML representation of table (as used by PMC) and it’s HTML visualisation
in a web browser (PMC 2410054)

Hurst (2000) did an extensive study of tables, table understanding and information
extraction from tables. He proposed a model of tables, which has five components:
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• Graphical – representation that describes how the table is rendered on screen,
e.g. bitmap,

• Physical – a description of the table in terms of physical relationships between
its basic elements when rendered on the page,

• Functional – the purpose of areas of the table with respect to the use of the table
by the reader,

• Structural – the organization of cells as an indication of the relationships be-
tween them,

• Semantic – the meaning of text in the cell, the relationship between the interpre-
tations of cell content, and the meaning of the structure in the table.

In the functional component of the table model, Hurst defined two types of cells —
access cells (navigational cells such as headers and stubs) and data cells (containing
table data). Hurst defined a reading path as a path which reader takes through an array
of cells when using the table to locate or read a particular piece of information. The
model developed in this thesis used Hurst’s model as a baseline, additionally specifying
and extending it.

Doush and Pontelli proposed an ontology of spreadsheets’ components that con-
tains an ontological model of tables. Their ontology was developed in order to help
their system for non-visual navigation through spreadsheets for visually impaired peo-
ple. The ontology describes tables and different kinds of cell components (header,
title, data, empty cell) with relationships between these components (Doush & Pontelli
2010, 2013). However, certain table elements, such as super-rows, were not part of the
table ontology. The ontology can be seen in the Figure 2.2. The presented ontology
served as a baseline for a data model for disentangling tables and storing information
from the tables in a manner that machines can process, described in Chapter 4.

The presented models of tables are the base of the approaches to detect, disentangle
table structure and facilitate further mining of information in tables. However, most
of these models do not capture all table types (e.g. Wright’s model captures only
list and matrix tables, but not multidimensional tables) and all table elements (often
some element such as super-rows or footers are not included in the model because the
approaches were designed for a subset of simple tables or it does not appear in a given
domain/document type). Models for computational representation are often focused on
visualisation, and lack features for capturing semantics of the information presented in
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Figure 2.2: Table ontology as presented by Doush & Pontelli (2013)

the table and their relationships. There is still no consensus about a complete table
model, as models usually lack certain table elements (such as super-rows) or features
for semantic table description or annotation.

2.2 Table processing workflow

Similarly to natural language processing, which is a complex task requiring lexical,
syntactic and semantic analysis (Ananiadou & McNaught 2006), table processing is
a multi-layered task. If natural language is used in a table’s content, tables require
similar processing layers as natural language. However, additional layers are necessary
in order to process and disentangle the structure of tables.

Hurst (2000) identified four layers of table processing:

• Table detection – locating tables in the document.

• Functional analysis – classifying areas in the table according to their functions
(e.g. header, stub, data cell).

• Structural analysis – inferring relationships between the cells.

• Semantic analysis – understanding the information presented in the table (e.g.
information extraction, information retrieval, question answering, etc.).
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Rastan et al. (2015) proposed a TEXUS system with a model that views table pro-
cessing as a set of consequent tasks: Document Converting, Locating, Segmenting,
Functional Analysis and Structural Analysis. In their model, they grouped tasks into
table extraction tasks (document converting, locating and segmenting) and table under-
standing tasks (functional analysis and structural analysis). TEXUS does not include
semantics in their workflow, since their goal was to transform tables to Wang’s abstract
representation (Wang & Wood 1993).

In this thesis we will use the workflow defined by Hurst, since the workflow defined
by TEXUS can be mapped to Hurst’s workflow (locating = table detection, segment-
ing+functional analysis = functional analysis, structural analysis = structural analysis).
TEXUS adds document converting to the workflow that may be necessary for certain
document formats. The workflow proposed by Hurst also includes semantic analysis
that can be applied to structurally analysed and disentangled tables in order to retrieve
or extract information, answer questions, or discover knowledge.

2.3 Table detection

The first challenge in table processing is to detect tables in documents. This task can
be challenging in some formats, like PDF, HTML web pages and ASCII text doc-
uments. Data from PDF files can be obtained using Optical Character Recognition
(OCR) (Kieninger & Strieder 1999, Rus & Summers 1994, Green & Krishnamoorthy
1995, Chandran & Kasturi 1993) or by interpreting binary content of the file (Yildiz
et al. 2005, Constantin et al. 2013). HTML documents often use the <table> tag. Un-
fortunately, not all elements that start with <table> tags are genuine tables that contain
structured data, as the same tags are often used for HTML page formatting. In free text
documents, tables are structured by using empty spaces or set of special characters (see
Figure 2.3).

Figure 2.3: Example of three ASCII free text tables: Generated classification output
from the Weka toolkit

Table 2.1 presents the main approaches to table detection with associated citations,
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which are discussed bellow.

2.3.1 Table detection in text (ASCII) documents

Table detection in free text ASCII documents was prevalent at the end of the 1990s and
beginning of 2000s. Later, with the emergence of rich text document formats, markup
formats, and portable document format (PDF), ASCII documents ceased being used for
presenting semi-structured information. However, parts of the approaches developed
for detecting tables in ASCII documents are useful also in other document types. The
presented approaches consist of machine learning algorithms or heuristics.

Ng et al. (1999) used two machine learning algorithms – C4.5 decision trees and the
back-propagation algorithm for artificial neural networks with nine features for table
boundaries detection. Each feature has its representation for previous, current and
next horizontal line. Therefore, each training instance consists of a set of 27 feature
values. Their system could also detect if some vertical line is the first line of a column,
within the column, last line of the column, or outside any column. As a dataset for
testing their approach, they used Wall Street Journal news. A similar approach was
used for the horizontal lines and rows. Their features include the number of white
spaces in the line, the number of leading spaces, the number of segments with multiple
continuous space characters, whether a cell contains special characters, alphanumeric
characters, etc. C4.5 provided higher accuracy on recognizing table boundaries and
columns, while back-propagation performed better at recognizing table rows. Silva
et al. (2003) used C4.5 decision trees to detect tables in both PDF (converted to ASCII
using the pdftotext Linux utility) and ASCII documents presenting companies financial
statements. They implemented a similar similar approach to Kieninger (1998), Pyreddi
& Croft (1997), Ng et al. (1999), that used alignment of characters, words, non-space
characters, and white spaces as features, but they also used a number of each line’s
inner spaces as a feature for machine learning algorithm. However, they also used two
heuristics to improve their algorithms: no matter how many inner spaces a line has, it
is not in a table if the lines around it are plain text; on the other hand a line with no
inner spaces is not plain text if table lines surround it. They reported recall of 99,4%,
but precision and F1-score were not reported.

Heuristics were also used in combination with statistical cross-correlation to detect
tables (Pande 2002). Cross-correlation is a standard statistical signal detection proce-
dure that is useful for determining the similarity of two signals. Pande (2002) explored
the cross-correlation concept as a way of computing similarity measures between lines
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Approach Citation Description ASCII XML PDF
Heuristic Chandran & Kasturi (1993) OCR detecting line X

Green & Krishnamoorthy (1995) structures of the document
Rus & Summers (1994) OCR and space density graphs X
Kieninger & Strieder (1999) OCR detecting word blocks in X X

same logical unit
Pande (2002) Cross-correlation between lines X
Yildiz et al. (2005) Heuristics about position of X

elements
Gatterbauer et al. (2007) CSS2 visual box and visual X

pattern recognition
Fang et al. (2011) Element position heuristics X
Nurminen (2013) PDF transformed to grayscale X

image and then edges detected
Constantin (2014) Graphical model of article X
Constantin et al. (2013) elements
Kasar et al. (2015) Attribute relational graph X

based on regular expressions
Machine Ng et al. (1999) ANN and C4.5, features about X X
learning Kieninger (1998) characters and white spaces

Pyreddi & Croft (1997)
Wang & Hu (2002) SVM with structural, content X
Son et al. (2008) type and word group features

Hybrid Liu (2009) Element positions, caption string X
matching, font size,
matching heuristics and ML
(CRF and SVM) to detect sparse
lines (table rows)

Silva (2010) Combination of HMM, X
Decision trees and
heuristics

Table 2.1: Approaches to table detection
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of plain text or between aggregates of lines. Their research have been performed on a
general domain, on documents and books stored in Odessa digital library.

2.3.2 Table detection in PDF documents

Since the initial release of the portable document format (PDF) in 1993 (Bienz et al.
1993), computational representation of tabular data moved towards this format. At the
physical level, we can observe some of the heuristics which can distinguish data cells
from access cells, such as font type, font color, cell background color, cell spanning,
alignment, line art, etc (Hurst 2000). However, PDF is a challenging format to extract
structures from, as it normally does not save the structure of their graphical objects
(Corrêa & Zander 2017).

Pdf2table recognises tables in PDF documents by using pdf2html. Pdf2html re-
turns PDF elements in XML with the position of these elements. Pdf2table uses ob-
tained XML information and extracts tables. Tables are extracted from PDF documents
using heuristics about content positions. Since the approach makes errors, the authors
created a graphical user interface which gives the user the ability to make adjustments
on the extracted data (Yildiz et al. 2005).

Similarly, pdfx is a rule-based system designed to reconstruct the logical structure
of scholarly articles in PDF (Constantin et al. 2013). The system output is an XML
document that describes the logical structure in terms of title, sections, figures, tables,
references, etc. The system carries a two-stage process in which firstly, it constructs a
geometrical model of the article’s content to determine the spatial organization of tex-
tual and graphical elements and then identifies logical units of discourse based on their
discriminative features (font styles, text positioning, lists of cue words, contextual fea-
tures, etc.) (Constantin 2014). This system is successful in recognizing tables, but the
transformation of the table into the XML format faces a number of challenges. For ta-
ble extraction and transformation they reported F1-score of 13.27% to 57% depending
on the dataset used (Elsevier, PMC or Luong et al.).

One of the approaches to detect tables in PDF documents is by using OCR. A num-
ber of studies use OCR to recognize tables using white space density graphs (Rus &
Summers 1994) or by detecting line structures in documents (Green & Krishnamoor-
thy 1995, Chandran & Kasturi 1993). Alternatively, the T-Recs system is able to read
both ASCII, PDF or paper scanned documents. This approach detects word-block
clusters and look for the words that belong to the same logical unit. T-Recs identifies
horizontally overlapping words that form the rows of the tabular structure (Kieninger
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& Strieder 1999).

Approaches for table detection were compared in a table competition that was or-
ganised during the 12th International Conference on Document Analysis and Recog-
nition (ICDAR 2013). The goal of the competition was to objectively compare state-
of-the-art techniques in table recognition in a standardized way, across several input
formats, including PDF. The competition asked participants to return the bounding
boxes of the table as well as information about the content, and location (column and
row number) of every cell in the table. Seven academic systems (Nurminen 2013, Fang
et al. 2011, Liu 2009, Yildiz et al. 2005, Silva 2010, Stoffel et al. 2010, Gobel et al.
2013) and four commercial products were submitted. The reported accuracy range for
table recognition was between 58.5% and 87.7% (Gobel et al. 2013). Several of these
approaches used positions of elements in a PDF document to detect graphic ruling lines
and white space delimiters (Fang et al. 2011, Yildiz et al. 2005, Stoffel et al. 2010).
Nurminen (2013) converted PDF into a grayscale image and used image processing
(comparing adjutant pixels) in order to find delimiters and tables. Silva (2010) used
machine learning (HMM and decision trees) in combination with heuristics to classify
lines of the document and locate tables.

Kasar et al. (2015) proposed a methodology in which the user first specifies a set
of key fields in the document image (commonly PDF). These fields are transformed
into graphs, where nodes represent cells with their features and edges represent spatial
relationships between them. Graph matching based on regular expressions and cosine
similarity with the content selected by the user is used to find other similar structures
on the document image. The extracted graphs are analysed to find the borders of the
overall table structure. The authors reported pattern retrieval precision and recall of
97.1% and 94.99% and cell recognition accuracy of 99.3%. However, this approach
heavily depends on the content of the tables and similar tables are extracted only when
the parts of the content are similar.

2.3.3 Table detection in XML and HTML documents

As structured logical representations, XML and HTML documents provide tags that
describe tables in the documents. However, these tables are not always used for pre-
senting data and in many cases are used to describe the layout. As a result, there is
a necessity to differentiate tables that present data and information from tables that
format the page layout.
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For solving this task, machine learning and heuristic methods were developed. Ma-
chine learning methods typically used Support Vector Machines (SVM) in order to
discriminate data tables from the formatting ones (Wang & Hu 2002, Son et al. 2008).
For example, Wang & Hu (2002) used three feature groups (structural, content type
and word group). Structural features were the average number of columns, a standard
deviation of the number of columns, the average number of rows, standard deviation
of the number of rows, the average cell length, standard deviation of cell length and
the average length consistency. They modelled cell content into seven content types
(Image, Form, Hyperlink, Alphabetical, Digit, Empty and Others) and their features
included a histogram of content type for a given table and the average content type
consistency. The third feature group was word group features where they calculated
TF-IDF measure with some adjustments. Son et al. (2008) used structural and con-
tent features, with two classifiers - one for each group of features. They found that
structural features were more important than content type and word group features.

An interesting approach focused on analyzing tables using visual representation
similar to ones that browsers use to draw tables (taking into account CSS and how
people view tables) using the CSS2 visual box (Gatterbauer et al. 2007). The authors
argue that it is difficult to detect tables from web documents only by analysing tree-
like HTML structure and that not all tables are inside <table> tags. Their approach
was to render pages and analyse visual two-dimensional patterns of the rendered page
by the set of heuristics in order to detect tables. They reported 81% recall and 68%
precision for table detection. However, the execution time needed to render the tables
and analyze them was over 5 seconds per table.

2.4 Functional table analysis

The second step in table processing is the functional analysis of cells. During this step,
the data area should be distinguished from the header areas and other access cells. This
is a challenging task, in particular when dealing with complex tables that have several
subheads (super-rows) and/or multi-row headers.

Approaches to this task consider using heuristics or machine learning classification
techniques. Most of the approaches recognize headers but often fail to recognize super-
rows and stubs (column heads). Table 2.2 lists some relevant approaches to functional
analysis of tables, which are discussed bellow.
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Approach Citation Description ASCII HTML PDF
Heuristic Hu et al. (2000a) Detecting headers based X

Hu et al. (2000b) on spacial and syntactic
rules

Tanaka & Ishida (2006) Formal representation X
given by humans
generalized into RDF

Embley et al. (2016) Block algebra and cell X
constraints

Hybrid Tengli et al. (2004) Decision trees and X
heuristics about empty
cells

Silva (2010) Uses set of machine X
learning algorithms to
determine the function of
each line

Hybrid table Jung & Kwon (2006) C4.5 decision tree and X
classification heuristic rules to find

genuine tables. Set of
heuristics to find header

Heuristic Chavan & Shirgave (2011) Uses combination of rules X
header and decision trees to find
detection genuine tables. Then it

uses a set of rules (about
font and additional
tags) to find headers

Machine Wei et al. (2006) CRF to annotate function X
learning of the line

Table 2.2: Approaches to functional analysis (mainly head detection)
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Tanaka & Ishida (2006) present a heuristic approach that gives a formal representa-
tion of generalized table structure based on adjacency of cells and iterative structures.
The approach is based on human interpretation of table structure, table generaliza-
tion and relation extraction from tables. Once humans interpret the table structures,
the table structures are automatically generalized. In this approach, users provide the
structure of the table and description of the relationships. The algorithm then extracts
data from the table following given descriptions that use a set of RDF statements de-
scribing the relation between data in a structure. The RDF structure is then represented
as a connected table and generalized by finding repetitive blocks.

For recognition of table structure from ASCII documents, hierarchical clustering
was used to identify a likely grouping of words and build a binary tree representation
of the table (Hu et al. 2000a,b). The algorithm identifies potential headers based on
spatial (the header for each column is roughly aligned with the column; hierarchical
headers are placed such that the high-level header is above its subsidiary headers and
centred horizontally with regard to the columns represented by the subsidiary headers)
and simple syntactic rules (every phrase in a header line must be associated with at
least one column; if a phrase in a header line is associated with more than one column,
then each subsidiary column must already have its own header assigned). Based on
the detection of cell function, they built a directed acyclic graph representation of the
table, which they were able to visualize and edit in a graphical user interface.

Tengli et al. (2004) used a machine learning approach in order to differentiate nav-
igational cells (access cells) from data cells on tables collected from universities web-
sites (using the Common Data Set, CDS tables). The features used were cell similarity,
the number of cells and type of cells. They also extracted headers, indexed them and,
if the relative string-edit-distance was less than a set threshold, they merged them to-
gether. They used learned labels for header detection but also used some heuristics and
transformations for detecting super-rows. For example, if the row contained empty
cells and before and after it there were non-empty data cells, or a row contained just
one non-empty cell – it was assumed to be a super-row label. They reported 91.4% F1-
score. However, the Common Data Set tables are relatively standardised and Universi-
ties have to follow given guidelines for present information in these tables. Therefore,
they are not representable set for possible table layout structures.

Jung & Kwon (2006) presented an example of a hybrid approach to functional anal-
ysis that filters easy detectable non-genuine tables by using a set of heuristics about
empty rows, tables without rows or columns, one-dimensional tables and fraction of
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hyperlinks and images. After this filtering, machine learning is applied with a set of
features such as presence of <caption>, <th> tags, border options, inner tables, nu-
meric data, fraction of empty cells, fraction of cells including <img>, <a>, <input>
tags, fraction of cells containing text, symbols, numeric data and probability of the
presence of the header, etc. Consistency features like the standard deviation of the
number of columns, the number of rows, length of columns and rows are also used.
Priority weighting is assigned to these tags, so if some cells contain more of them,
the probability of that cell belonging to the header will be higher (Chavan & Shirgave
2011). Cell similarity can be an indication of the header since headers are the origin of
the columns’ similarity and sets the pattern of the body cells’ content that is followed
it in the column. Jung & Kwon (2006) reported 95% F1-score for distinguishing table
types and 82.1% accuracy in extracting table headers from genuine tables.

2.5 Schema matching

Schema matching is a field of research that aims to generate correspondences between
the elements of multiple information schemas. Schemas could be in any format (XML,
SQL, ontology, etc.). The goal is to find semantically equivalent or related elements in
the other schemas. The field of schema matching for tables is related to functional anal-
ysis because in order to find a match between table and database or ontology schema,
it is important to recognize the table headers. Also, some of the work extends schema
matching into the applications of information extraction or question answering do-
mains. A number of approaches have been proposed, including linguistic matching,
thesauri, structure or graph based matching (Bernstein et al. 2011). Several authors
proposed approaches to match tables, usually from XML, HTML or spreadsheet into
the structured or linked data database (Cafarella, Halevy, Wang, Wu & Zhang 2008,
Shigarov 2015, Embley et al. 2016).

WebTables (Cafarella, Halevy, Wang, Wu & Zhang 2008, Cafarella, Halevy, Zhang,
Wang & Wu 2008) system attempted to improve the relevance of search and improve
database management systems by extracting tables from web pages into a relational
database. Their system filters non-relational tables using machine learning and classi-
fies tables with headers. For tables that do not contain a header, they used a reference-
matching technique which tries to find a label for the column based on the data and
previously extracted tables with headers. Since each table can have its own schema of
labels (headers), each table is considered as a relational database, with labels (headers)
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and an array of tuples (data). They developed a keyword search over the corpus of
154 million tables that provided higher relevance than solutions based on traditional
information retrieval techniques.

Shigarov (2015) created a rule engine (called CELLS) that utilizes spatial, typo-
graphical and natural language information in order to transform information from
tables in a spreadsheet format into a relational database. Embley et al. (2016) used
block algebra together with a cell constraint model to describe table layouts in order to
determine headers and extract table data from HTML and spreadsheet formats into the
SQL or RDF structure suitable for querying. Unlike the majority of approaches, they
considered both row and column headers for their recognition task.

Mulwad et al. (2010, 2013) utilize knowledge bases in order to cluster the entities
into the labels that are likely to describe them and use semantics to map web tables
into the relational or semantic schemas.

2.6 Information retrieval from tables

Information retrieval considers a task of finding and presenting relevant information
to the user. Search engines, such as Google, Bing or PubMed, are examples of infor-
mation retrieval systems. The majority of popular search engines lack specific support
for tables, since tables present a challenge because of diverse media formats, different
table layouts, cell types or value presentation patterns (Liu 2009).

The BioText Search engine (Hearst et al. 2007, Divoli et al. 2010) retrieves infor-
mation from texts, abstracts, figure captions and tables from PubMedCentral. Different
indexing weights are assigned to the various document elements (title, text, abstract,
table captions, table data; figure and image captions). If a table search is selected, dif-
ferent indexing weights are used compared to when the text search is chosen. For table
search, maximal weights are assigned to table captions and table data, while article
text and image captions have a low weight.

Liu (2009) created a system called TableSeer that is focused on indexing and rank-
ing tables in scientific articles in PDF format using OCR and proposed an algorithm
called TableRank. TableRank considers multiple features of a table and the document
it appears in, and aggregates these features to determine the final ranking of the ta-
ble with respect to a query. The approach consists of five elements: a table crawler,
a table metadata extractor, a table metadata indexer, a table-ranking algorithm, and a
table search query interface. In summary, TableSeer crawls scientific documents from
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the digital libraries, identifies the documents with tables, detects each table using a
document page box-cutting method (an OCR method), extracts the metadata for each
identified table, ranks the matched tables against the end user’s query with the TableR-
ank algorithm, and displays the ordered results in a user-friendly interface. TableRank
tailors the traditional vector space model to rate the <query, table> pair by replacing
the document vectors with the table vectors. It uses the standard TF-IDF and cosine
similarity measure. However, parts of tables in the table vector are weighted differ-
ently; for example, a table title would have higher importance than table data during
the search. TableRank also uses some document features, such as the number of cita-
tions, impact of a journal or conference and publication year in order to rank the results.
Compared to BioText, TableSeer returns whole documents with relevant tables, while
BioText extracts and shows only potentially relevant tables.

2.7 Table mining applications

One of the challenging tasks for table processing and developing table mining appli-
cations is the extraction of data and its relationships from the table. Relationships,
especially in complex tables can be fuzzy and ambiguous.

Several approaches have been designed for information mapping and storing infor-
mation from tables. Information from tables can be mapped to predefined, structured
database/knowledge sources, or stored in the form of attribute-value pairs. Processed
table information allows development of information retrieval, information extraction,
knowledge discovery or question answering applications.

The main methodologies for development of table mining applications are:

• Heuristic and knowledge-driven – uses a knowledge source and, typically, a set
of heuristics defined by experts.

• Machine learning driven – learns to process and extract information from previ-
ously annotated data.

2.7.1 Knowledge-driven approaches

A number of information extraction approaches used heuristics in combination with
ontologies to extract instances of classes (Embley et al. 2005, Quercini & Reynaud
2013, Hignette et al. 2009, Jannach et al. 2009). For example, Embley et al. (2005)



2.7. TABLE MINING APPLICATIONS 53

used an ontology to recognize expected attribute names (header categories) and data
values from tables. They used specific domains of car advert and phone sales tables.
Using the ontology, it was possible to identify table attribute (navigational) cells and
associate them with value cells. If the value cell is empty, this method can distinguish
whether the cell is missing or the cell has a value based on internal factoring by ob-
serving a pattern of empty cells in a column. However, their approach only works for
top-level tables whose attributes are at the top of columns, while their approach is not
able to deal with complex tables (Embley et al. 2005).

Hignette et al. (2009) used fuzzy similarity measures (each cell is annotated with
multiple concepts sorted by relevance) to annotate table relations (annotate cells, then
columns, and at the end relations between columns) based on a pre-determined domain
ontology. The ontology can be instantiated using tables on the web and a set of heuris-
tics for table structure and tokens in a table (Jannach et al. 2009). Each application of
these approaches needs to have its own ontology to annotate table data.

Tables can also be interpreted using existing Linked Data Knowledge Bases. Mul-
wad et al. (2010, 2013) presented a method that comprises four steps. In the first step,
ontology classes are associated with columns. According to Mulwad et al. (2010), in
a typical, well-formed table, each column contains data of a single syntactic type (e.g.
numbers) that represent entities or values of a common semantic type (e.g. number of
people, yearly salary in US dollars, etc.). The column’s header, if present, may name
or describe the semantic type. The approach is to map each cell value to a ranked list
of classes and then to select the one which best characterizes the entire column. To
utilize this approach, the Wikitology knowledge base was queried. In the next step,
the algorithm links table cells to entities from the Linked Open Data cloud (the Linked
Open Data cloud was used for annotating and normalizing entities in the cells). In
the third step, the algorithm tries to identify relations between table columns by gen-
erating a set of candidate relations from the relations that exist between the concepts
associated with the string in each row of at least two columns. DBPedia was queried to
identify relations. In the final step, they developed a template for annotating and rep-
resenting tables as linked RDF. They reported that 66.12% of table cell strings were
correctly linked. The algorithm performed quite well in linking Persons (83%) and
Places (80%), but quite poorly in linking data like movies, nationality, songs, types of
business and industry. This may have been due to the sparseness of data for these types
of entities in the knowledge base. This approach works for tables that Mulwad et al.
(2010, 2013) call well-formed (having a category per column with category definition
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or label in the first row). Well-formed tables are a subset of tables and present quite
restricting definition of tables and therefore this term or definition is not used further
in this work.

Limaye et al. (2010) also used knowledge sources (e.g. YAGO, DBPedia) to an-
notate cells, columns and relations between columns, with the help of machine learn-
ing and word similarity measures, such as cosine similarity. A similar approach by
Quercini & Reynaud (2013) used knowledge sources for annotated named entities
(such as restaurants, theatres, museums) in tables but in case an item was not known,
a search engine was queried for that item. They retrieved snippets from the search
engine and classified them using a classifier in order to retrieve named entity class.

A small seed ontology can be enriched using tables, which was shown with the
example of geopolitical entries from tables (Tijerino et al. 2003). In this approach,
relatively simple tables were analyzed, entities were extracted and top-level entities
were matched with entities in the seed ontology.

In order to improve a heuristic method that uses ontologies and thesauri for in-
formation extraction, tables can be simplified to a single standard type that contains
only one header row (Wang 2013). If some cells contain column-spanning or row-
spanning, those cells are appended to the next header cells (over which it spans) and
deleted. However, this approach does not involve header detection and simply appends
spanned cells to the following ones. The extraction algorithms read the properties from
a first table row and look up in the ontology. If the property is found in the ontology,
the values are stored in the database. If not found in the ontology, the method looks
for synonyms in the thesaurus. If the property is not matched, then it creates a new
value in the ontology. Using this method, ontology term matching resulted in average
accuracy of 93.6%.

Van Assem et al. (2010) used the ontology of units of measure and related concepts
(OUM) to annotate tables. The approach was of a classical text annotation task, firstly
extracting the content of the cells and annotating it using a set of crafted rules.

Tables can be represented as attribute-value pairs, especially if reduced to the grid
structure by dropping column-spanning and row-spanning cells, while duplicating con-
tent to the required number of cells. A cell can be a value of more than one attribute
and may act as an attribute in one case and a value in another. As a result, multi-
ple attribute-value pairs can be merged to represent the actual meaning of table (Chen
et al. 2000). Data from web tables can be clustered to build concept-term relations
using overlapping triplets from tables. Triplets contain three entities of the same class
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(e.g. [Apple, Avocado, Peach] – fruit class triplet) that occur in the same table (usually
in the same column). It is possible to make concept-term clusters in an unsupervised
way. The content of three rows can be taken as a data triplet from each column. The
assumption is that the context for each term is stored in a triplet. Triplets can be clus-
tered by concept since each triplet represents instances of the same concept. Tables are
labelled with the help of a Hyponym Concept dataset, which includes data on terms
and concepts they occur in, with counts for each concept. However, this approach can
only be used for a narrow set of matrix tables (Dalvi et al. 2012).

Google have patented a method to extract relational tables from lists on the Web
(Elmeleegy et al. 2014). The aim was to transform lists into multi-column relational
data. They firstly split individual lines into multiple fields, and then compare the splits
across multiple lines to identify and fix incorrect splits and bad alignments. For each
table a calculated extraction score should reflect the confidence in table’s quality.

ChemDataExtractor (Swain & Cole 2016) recently presented a method for infor-
mation extraction of chemical entities from literature that is able to process both text
and tables. It focuses only on tables where data about a chemical entity is in one row,
utilizing a rule-based parsing grammar tailored for extracting certain properties. Ex-
tracted data is mapped into a predefined data model. The overall results range from
85% F1-score to 92% for various sub-tasks. However, no results for information ex-
traction from tables only have been reported. The methodology is also limited to the
pre-described type of simple tables although it can extract information from XML,
HTML and PDF documents.

2.7.2 Machine learning approaches

One of the main applications of information extraction is a question-answering system.
Wei et al. (2006) designed a question-answering system that answers questions whose
answers were in tables. The system analysed ASCII free text documents and tagged
table lines with functional tags (e.g. title, header, superheader (super-row), data row, ta-
ble caption, nontable, etc.) using the conditional random fields (CRF) algorithm. They
used white space (the number and length of white spaces and gaps), text (the number
of cells on a line, certain types of string more typically in some parts of tables, type of
character on a line) and separator features (special characters, successive characters)
from current, previous and following lines. The system created an XML document for
each cell with data, metadata and table captions related to that cell’s information. Cell
documents were created using a set of heuristics about header cells. Cell documents
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are ranked using information retrieval methodology (TF-IDF and cosine similarity), in
order to find the document that contains the answer to the query. The work of Wei et al.
(2006) provided a baseline for the development of the data structure for storing table
data and its annotations (described in detail in Chapter 4).

Information can be extracted from tables to semantic triplets of the form <p, s,
o>, where p is a predicate or relation, s is the subject of the predicate and o is its
object (Crestan & Pantel 2010). However, extracting the subject from the table can
be challenging. In attribute-value tables (tables containing only 2 columns with at-
tributes in the first and values in the second column), normally one column is devoted
to the attribute names (mapping to predicates, p) and another column to the values of
the attributes (mapping to the objects, o). Extracting predicate and object is gener-
ally straightforward in attribute-value tables. There are mainly three places where the
protagonist (subject) could be found: within the table (occasionally found in the table
with a generic attribute such as name or model), within the document or within the
HTML <title> tag and anchor text pointing to the page. Crestan & Pantel (2010) used
N-grams (1-12 grams) and anchor text (obtained from a commercial search engine’s
web link graph) in combination with the Gradient Boosted Decision Tree (GBDT) re-
gression model. They reported 40% precision, which they considered a good starting
point as they also reported a 97% chance to find the correct protagonist in the top 100
ranked candidates.

Recently, Sun et al. (2016) proposed a three-step approach for answering questions
that have answers stored in a table. In the first step they generated a set of candidate
chains containing a topic (label or header) and a value. In the second step, they utilized
search engine snippets to filter out irrelevant candidate chains. In the last step they used
deep neural networks in order to rank remaining answers.

Gene mutation extraction from tables is one of the rare applications of table mining
in the biomedical domain (Wong et al. 2009). PubMed was crawled following links
to HTML articles containing tables. Since these tables are labeled with table tags, the
approach did not have to deal with table detection. The extraction task is grounded in
the specific content of the Mismatch Repair (MMR) Database — a database of known
genetic mutations related to cancer, along with links to research papers from which the
database has been constructed. From the database and its links to papers, a collection of
tables related to cancer mutations was constructed. Then, the MMR database records
themselves were used as a gold standard for evaluating the techniques. Column headers
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were detected using <hr> tag and row headers were detected by checking if the top-
left cell was empty. They classified columns/rows (depending on whether the table
was horizontal or vertical) into relevant entities and used a heuristic for classification
of headers matching the header string to the names of the classes. The second approach
was to build a more informed classifier for the class ”Mutation” using an NER system
called MutationFinder (Caporaso et al. 2007). They applied MutationFinder to the
text in the table cells and identified which table-vector contained at least one mutation
mention. They used a set of machine learning algorithms with different sets of features
(cell bag-of-words, header bag-of-words, cell and header bag-of-words, basic features
like header string, average median cell length and are data numeric).

Xu & Wang (2015a) created a classifier for drug-associated side effects, using
the lexicons for side effects and drugs. Firstly, the extracted tables were classified
using machine learning into two classes – related to drug-side effects and unrelated to
drug-side effects. Secondly, the associations were extracted using rules and manually
curated lexicons of drugs and side effects. The study showed that 84.7% of side effect
extracted from tables from articles published in Journal of Oncology were not reported
in FDA’s drug labels.

Silva (2010) claims that table mining is a complex, multi-layered problem and no
one algorithm is capable of accurately treating all tables. She applied several algo-
rithms on in order to extract information from tables in financial statements, such as
SVM, heuristics and graphical approaches such as Markov random fields.

Since successful information extraction depends on gold standard corpora, Shman-
ina et al. (2016) developed a corpus of tables in full-text biomedical literature for infor-
mation extraction and relation extraction. They developed an annotation guideline and
a dataset comprising of 83 annotated tables with UMLS concepts, cell groups, and re-
lationships between cells (associated with, property of). Even on request, the dataset
was not made available to the author.

2.8 Table navigation for visually impaired people

One of the most important applications of table mining is table navigation for the
visually impaired. Screen readers allow for basic navigation through a table, reading to
the user content of cell, row or column (Yesilada et al. 2004). Some screen readers on
iPad read the content of the cells under a reader’s finger (Ahmed et al. 2010). For table
reading, it is unnecessary to add semantics or analyze the function of the table areas.
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However, some approaches included the use of a table ontology and utilized functional
analysis of the cells (Doush & Pontelli 2013, 2010). Some of the approaches for table
navigating for visually impaired people are available in commercial products such as
JAWS 1.

2.9 Conclusion

In the past, various models and approaches for table processing have been presented.
Typically however, these models only describe a table’s visual structure and have been
designed mainly for presenting information. In order to obtain a model that describes
the meaning of the table values and their relationships, further processing is necessary.
Models that link data cells with their navigational cells or table data with the meaning
described in some ontology are rare and often incomplete (e.g. do not include all table
types or table elements). Apart from abstract, physical and logical table models, there
is a need for a semantic model that describes relationships between cells and content
with their semantics.

Processing and understanding tables involves several steps: detecting tables, ana-
lyzing functional areas, structure and table semantics. Successful approaches across
different media types (HTML, PDF, text documents) have been proposed for table de-
tection. Similarly, a number of heuristic and machine learning-based approaches have
been proposed for functional analysis. However, most functional analysis approaches
have focused on detection of column headers, while detection of other functional areas,
such as row headers (stubs) or super-rows are rare. The majority of table processing
research is undertaken in these two areas. With satisfactory results for table detec-
tion and functional analysis (header detection), these problems could be considered
solved. Table mining relies on table detection and functional analysis, which makes
these two research fields attractive to researchers. Detecting inter-cell relationships
adds semantics by linking a certain data cell to the related navigational cells. Informa-
tion retrieval, information extraction and knowledge acquisition approaches have also
been presented. Table understanding (tasks such as information retrieval, information
extraction or knowledge acquisition) relies on previous steps that can be applied to
a wide variety of table layouts, as their main purpose is to add semantics to the ta-
bles. The semantics of the table content have to be domain specific. Even some of
the seemingly domain independent tasks, such as functional analysis may benefit from

1http://www.freedomscientific.com/Products/Blindness/JAWS
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semantics and domain specific approaches. Work, done so far, was either performed
in various diverse domains or tried to find solution for general domain. These attempts
produced limited results. Certain solutions are available only for some narrow do-
mains (e.g. car sales, gene mutations, etc.) or they are limited by a specific table type.
There is a need to consolidate the efforts and present a complete information extrac-
tion work-flow for one domain that is generalizable with certain modification to other
domains.

Specifically, the survey presented in this chapter highlights the following chal-
lenges:

• Resolving structural relationships between table cells: relationships between the
cells depend on functional analysis. However, only a few approaches have been
presented on how to disentangle inter-cell relationships.

• Handling complex tabular structures: many approaches disregard complex table
types (multiple tables merged, or tables with spanning cells or super-rows).

• Semantic analysis of tables and its applications to knowledge discovery, infor-
mation extraction, question answering: some of these applications have been
explored, but many lack a domain specific solution, such as biomedicine.

• Lack of resources: we noticed that most of the approaches have not published
data or software implementations. Some were not available even upon request.
The rarely available implementations are not maintained and often rely on dep-
recated libraries.

Consequently, we see three gaps for table-mining research:

1. Structural analysis and inter-cell relationship resolution.

2. Creating a table models for storing and representing semantics of information
stored in tables.

3. Table understanding and semantic analysis, including tasks and applications re-
quiring a level of semantic understanding of data. Capturing common table and
value representation patterns and their semantics can be one of the examples that
facilitate table understanding.

The steps are dependent on each other, so it would be difficult to tackle table under-
standing and applications of table mining without resolved inter-cell relationships and
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without a good model to store multidimensional semantic information about the table.
The described directions are reflected in our research questions presented in Section
1.4. Structural analysis and inter-cell relationship resolution refer to the question on the
levels of processing needed for disentangling a table’s internal structure from its visual
representation. The table model for storing and representing the semantics of the table
data is reflected in the same question but expanded with questions about processing
levels, necessary knowledge and information for designing an information extraction
system. In the case of table understanding and semantic analysis, this thesis focuses on
information extraction tasks. Our research questions ask about what layers of process-
ing and knowledge of the data is required for building a table information extraction
system, as well as which layer can benefit from machine learning approaches com-
pared to rule-based approaches, and what accuracy levels can facilitate successful data
curation.

Table mining is a complex, multi-layered problem and no one algorithm is capa-
ble of accurately treating all tables (Silva 2010). Thus, coordination between different
table processing approaches, whether these are alternative or sequential to each other,
is fundamental. Analysing table function, structure or detecting tables is not much de-
pendent on domain knowledge and can be done without any domain specific resource.
However, table interpretation is dependent on context knowledge and therefore table
interpretation may use domain ontologies and lexicons.

The biomedical domain is an active research domain for text mining, with a strong
focus on literature mining and information extraction from the literature. To-date,
only a few approaches have been presented for mining information from tables in the
biomedical domain. Text mining of tables in the biomedical domain is also impor-
tant, as advances in biomedical research and better access to biomedical information
can have an impact on societal health, quality of life and mortality. Therefore, this
research focuses on developing a table mining and information extraction approach for
the biomedical domain.



Chapter 3

Methodology Overview

3.1 Introduction

Literature processing has a goal to extract, store and maintain relevant information
from the articles and facilitate querying and usage of presented information. The pro-
cess of collection, storage, maintaining, annotating and integration of the data in order
to maintain the value the information over time is called data curation (Yakel 2007).
This thesis focuses on information extraction and data curation from tables presented
in biomedical documents in XML format. Generally, semi-automated data curation
systems consist of four components: an information extraction engine, a data store,
a data curation interface and a query interface (Alex et al. 2008). Each of the four
parts of the system may be supported by various knowledge sources such as lexicons,
thesauri, databases or linked data sources.

An architectural overview of the proposed approach is shown Figure 3.1. This
approach first processes documents using an automated information extraction system.
After the data is extracted, human expert curators check and adjust the extracted data
using a data curation interface to assure the validity of extracted data. Users may access
the data using a query interface. In the following sections, these components will be
described in more details, with the focus on information extraction methodology.

3.2 Scope

A methodology that facilitates information extraction and curation from tables in the
biomedical literature requires a model for preserving table information, an information
extraction engine and data querying engines.

61
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Figure 3.1: High-level architecture of the proposed methodology
1. Retrieved documents are sent to the table mining engine. 2. The table mining engine uses knowledge
sources to extract information from the table. 3. Extracted information is stored in a data store. 4. Data
curators review and correct extracted information. 5. Users submit queries to the query interface in
natural language. 6. Queries are processed and normalized. 7. Using normalized queries, the data store
is queried. 8. Relevant extracted information is presented to the user.

The data presented in tables are often unreachable by automated literature process-
ing systems. Therefore, there is a need to make these data reachable and searchable.

The context of the presented information is stored in navigational cells (headers,
stubs, and super-rows) and table descriptors (table caption and footer). In order to
make table information searchable, this information needs to be complemented in a
data model with information from related navigational cells and table descriptors. For
example, if we consider the table presented in Figure 3.2, and cell with content ”12/4”
in order to interpret the content, it is necessary to consider its stub and header (gen-
der distribution for dexmedetomidine arm). Transforming information from an article
to a data model that preserves cell information with its context and allows for query-
ing of data, highlights the need for cell function recognition (functional analysis) and
disentangling relationships between cells (structural analysis).

Once the data is transformed and stored in a format that allows querying, it is
possible to make the following queries:

• Find relevant tables constrained by the content of the table and the article (e.g.
find tables containing ”dexmedetomidine”, find tables containing adverse events



3.2. SCOPE 63

in the caption and ”cancer” in the article title, etc.).

• Find cells constrained by their content or the content of related navigational cells
(e.g. find cells containing ”sex” in stub, find cells containing ”dexmedetomi-
dine”, etc.)

Figure 3.2: Example of a table presenting values using different presentation patterns
(PMC 29047)

Data represented in the data model that connects navigational cells with the data
cells and makes possible querying the table data is useful for information retrieval.
However, semantics are still missing from the data. The aim of information extraction
is to extract variables of interest with values and metadata from the literature tables.
In a given example from Figure 3.2, the methodology should be able to infer that the
row with ”Sex” in the stub is related to gender distribution: 12 is the number of male
participants and 4 is the number of female participants. Also, the methodology should
infer that the values are related to the dexmedetomidine arm of the trial. Therefore, an
information extraction template for extracting information from tables should contain
the name of the extracted variable, the value of the variable, unit of measure, variable
metadata (information from navigational cells, such as name of the clinical arm, patient
ID, etc.), document metadata (reference to the document and the table), etc. Informa-
tion extracted in this manner allows for more granular queries (e.g. number of males in
dexmedetomidine arm) and performing certain operations on the data (e.g. calculating
a number of participants from the reported number of male and female participants,
retrieving studies in which a variable was greater/lower than a specified value, etc.).
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3.3 Table information extraction

This part of the methodology aims to extract information from the source documents
automatically. At a higher level, the methodology contains four parts:

1. Table detection – determines the location of table in the document.

2. Table disentangling – decomposes the table in the article into cells, while infer-
ring their function and relationships to other cells. This part is usually task and
domain independent.

3. Table and cell annotation – annotates, normalises and enriches the information
in cells and table. Performs pragmatic and semantic tagging of cells and tables.
Since this part uses specific knowledge bases and machine learning models, it is
typically domain dependent but task independent.

4. Information extraction – extracts the variables of interest into the data store.

The graphical presentation of these high-level methodology parts and how they
form an information extraction methodology workflow can be seen in Figure 3.3.

Figure 3.3: High level overview of the methodology

On a lower level, our approach consists of seven steps: (1) table detection, (2)
functional analysis, (3) structural analysis, (4) semantic tagging, (5) pragmatic anal-
ysis, (6) cell selection and (7) syntactic processing and extraction. Table detection is
the first part of the methodology. Functional and structural analysis answer how cells
are related to each other. Semantic tagging and pragmatic analysis form the third part
of the high level methodology. The process is finishing by information extraction that
consists of cell of interest selection and syntactic processing. Detailed overview of the
methodology is presented on Figure 3.4. Each step of the methodology is described
below.
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3.3.1 Table detection

In table mining, it is first necessary to identify table mentions in documents. In some
types of documents, this task might be trivial. For example, in many XML formats it
is possible to identify tables by extracting the content of a specific XML tag. However,
in some types of XML documents and in HTML it is a much harder task. Research
on the identification of tables from HTML was described in Section 2.3 and is outside
the scope of this thesis. Our methodology is developed for documents in PMC and
DailyMed database, where tables have been identified by locating appropriate table

tags.

3.3.2 Table disentangling

Functional processing

The second step in the methodology is a detection of navigational and data areas. In
literature, this task is called functional area detection or functional table analysis since
it determines the function of cells in a table. In this task, it is important to distinguish
header, stub and super-row cells from data cells. Research that addressed this task was
discussed in Section 2.4. Many authors have used machine learning to approach this
problem. However, the challenge is that there is no publicly available annotated dataset
or system. Therefore, out methodology mainly follows a heuristic-based approach that
considers the arrangement of cells, spanning cells, a presence of special characters
(e.g. horizontal lines) or empty cells, cell similarity, etc. However, this approach could
not distinguish functional areas in cases where tables did not make any distinction
between navigational cells and data cells. Thus, only semantics can distinguish func-
tional areas. In order to detect functional areas in datasets in which headers are only
semantically distinguishable, the methodology uses a machine learning classifier based
on cell content.

Structural processing

The aim of structural analysis is to map each data cell in the table to the related navi-
gational cells (i.e. header, stub, and sub-header). Structural analysis, through Hurst’s
model (Hurst 2000), can be seen as finding reading paths. This task is highly dependent
on functional analysis of the table. If headers, stubs and super-rows are correctly rec-
ognized, our methodology can relate data cells to their navigational cells. Also, since
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tables can have multiple layers of headers, stubs or super-rows, the method needs to
relate lower layers of navigational cells with the higher layers that describe them in
a cascading way. We used a set of heuristics about cell function, structure, content,
position and table structure to disentangle table structures and inter-cell relationships.

3.3.3 Table and cell annotation

Pragmatic classification of the table

Our methodology labels the table with the class that represents the category of domain-
specific information stored in it (for example, in our clinical trial case studies, we used
the following four classes: baseline characteristics, adverse events, inclusion/exclusion
criteria, other). The classification algorithm infers what the table is used for and how
its context contributes to the meaning. In linguistics, a study of author’s intent and
how context contributes to meaning is called pragmatics (Liu 2005). Therefore, this
classification is called pragmatic classification of tables. It is intended to narrow the
scope when extracting information and exclude information that would be mapped to
the same concept but is used for a different purpose (e.g. the number of patients at
the beginning of the trial and the number of patients that survived until the end of the
trial). Pragmatic classification is performed using the machine learning methodology
with table content features.

Semantic tagging

Data in table cells are usually presented as strings and numerals. Semantic tagging nor-
malizes and enriches data. In this step, our methodology makes relationships between
words or phrases and concepts in knowledge sources. Binding data to knowledge
sources is useful since knowledge sources contain semantic information that can be
used to automatically determine the meaning of the cell, group of cells or the whole ta-
ble. This method enriches data by annotating cell content using named entity recogniz-
ers and vocabularies such as UMLS (Bodenreider 2004). For this purpose, annotation
software called ”Marvin” was developed that is able to annotate text by mapping it to
multiple knowledge sources. Marvin can be used both as a library or standalone appli-
cation. At the time of writing, Marvin supports annotations using WordNet, MetaMap,
DBpedia and custom SKOS thesauri.
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3.3.4 Information extraction

The aim of the information extraction task is to extract user-defined variables, their
values and metadata from tables in literature (see Section 3.2). Here we firstly describe
extraction template, then we describe variable description framework that is used for
developing information extraction rules and methodology. At the end we describe the
information extraction steps, namely cell selection and syntactic analysis.

Extraction template

Since tables present multidimensional data, an information extraction template should
reflect the multi-dimensionality of the information, the variable’s value and present
necessary metadata and context attached to the variable. Additionally, the template
should retain a bond to the article from which the information is extracted. We propose
the following extraction template:

(VariableName,VariableSubCategory,ValueComponent,Context,Value,Unit)

• VariableName is the name of the variable that should be extracted. It can be
linked with a certain ontology (e.g. Ontology of Clinical Research (OCRe) (Sim
et al. 2014) or UMLS).

• VariableSubCategory is used only for variables when there are multiple subcat-
egories that have values (e.g. ethnicity and number of participant presented as
number of White, Asian, Hispanic and Black people).

• ValueComponent parameter presents the name of the value component of the
extracted variable’s value, obtained by analysing its presentation pattern. For
example it may be Value if the cell presents a single value, Range:Min if the
extracted value is minimum in the range, Range:Max for the maximum in the
range, Percentage for values presenting percentage, Mean for mean values, and
SD for standard deviation. In the case when a cell presents a range, two rows
in the template should be extracted, one for the minimum and one for the maxi-
mum.

• The Context is the parameter that describes the value’s context. It can be, for
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example, a clinical trial arm for tables presenting cumulative baseline character-
istics of patients, or a patient identifier for tables presenting baseline character-
istics for each patient separately.

• The Value is the extracted value for the given variable from the table.

• The Unit parameter is only applicable for numeric variables, where it is used
to specify the unit of measure in which the value is expressed. For example,
body mass can be presented using a singular unit (gram), multiples (kilogram)
or sub-multiples (milligram) (Van Assem et al. 2010). Each variable should have
defined a default unit (if it exists, usually it is singular unit) and that unit is used
if it is not otherwise specified in the table.

Additionally, the template should retain a bond to the article and the table from
which the information is extracted. Example of the table and several populated tem-
plate rows can be seen in Figure 3.5.

Figure 3.5: Example of a table (PMC 65527) and extracted information to the proposed
extraction template

Framework for information extraction from tables

This thesis proposes a framework for information extraction from tables that relies on
variable description. The variable description includes:
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• Variable identifier - Name or ontological identifier of the variable that should be
extracted from the data.

• Pragmatic class of the table - Pragmatic or context class of the table narrows the
scope of the information search and reduces the number of false positives.

• Lexical and/or semantic cues - These cues help determine whether a certain
cell contains variable or its value. Lexical and semantic cues are defined us-
ing whitelist (cues that indicate an existence of the value in a certain cell) and
blacklist (cues that indicate that cue is not in the cell).

• Functional cues - Indicate in which functional areas of the table cues should be
looked for and in which functional areas variables and their values are presented.

• Syntactic patterns - Indicate how the complex value presentation patterns asso-
ciated with the target variable should be disentangled and which part of the cell
with a value should be extracted target variable.

• Unit of measures - Indicates in which unit of measurement the value is presented,
if applicable.

Based on this description, information extraction task is designed and executed.
Information stored in tables can be numerical (e.g. number of patients, BMI, av-

erage age, etc.), categorical (e.g. positive/negative, grade I/grade II/grade III, etc.) or
textual (e.g. definition of terms or scales). Presentation patterns for variables of the
same type are often similar. For example, statistical variables such as BMI (body mass
index), age, FEV1 (forced expiratory volume exhaled at the end of the first second
of forced expiration) are usually presented as mean, standard deviation and/or value
range. Tables presenting them often have a similar structure. Therefore, it is possible
to use these cell content presentation patterns and develop a set of rules that can be ap-
plied to extract many variables. The proposed framework generalizes table information
extraction using patterns that commonly appear in tables (structural, semantic/reading,
syntactic).

Cell selection

Once the knowledge from or the variable description or recipe for the information class
is provided by the user, the framework method can extract the defined variables and
their values. The method uses rule-based method that firstly selects cells that contain
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cues in given functional areas (headers, stubs, super-rows or data cells). Once cells
are selected, they are analyzed against the blacklist of cues. If the blacklist exists in a
given functional area, the considered cell is discarded.

Syntactic analysis

Before the information is extracted, the syntax of the selected cell is analysed against
a set of syntactic patterns. These patterns are pre-defined to inform the method how
to disentangle and interpret the content of the cell. Cells often contain complex value
presentation patterns and represent multiple information (see example in Figure 3.6).
Authors usually use same or similar value presentation patterns to present similar infor-
mation (e.g. variable value, mean, standard deviation, percentage, alternative values,

etc.). Patterns provide the way to extract atomic information and to provide the value
presentation semantics. For example if the value is presented as 16± 3.2, it is possi-
ble to determine that the first value is mean or median, while the second is standard
deviation or standard error. In order to exactly specify the semantics of each value
component, the methodology looks at the related access cells. Based on these patterns,
information is extracted and stored to the database.

Figure 3.6: Syntactic analysis infers the implicit meaning from the value presentation
pattern (upper row) or link to the explicitly stated meaning in the navigational cells
(lower row)

3.4 Evaluation methodologies

As evaluation metrics for information extraction and classification are often used pre-
cision, recall, and F1-score. Precision is a measure that evaluates how many true/rele-
vant instances are among the retrieved (classified as positive) instances. The recall is
a measure that evaluates the number of true/relevant instances that have been retrieved
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(or classified) among the total number of true/relevant instances. In order to calculate
precision and recall, it is necessary to introduce the following metrics:

• True positive (TP) - a number of true/relevant instances that were retrieved. The
number of instances that are relevant/true and as well indicated by the algorithm
that is relevant.

• False positive (FP) - a number of irrelevant instances that were retrieved as rele-
vant. The number of instances that are irrelevant/false, but indicated as relevan-
t/true by the algorithm.

• False negative (FN) - a number of true/relevant instances that were not retrieved.
The number of instances that are relevant/true, but algorithm indicated them as
irrelevant/false.

• True negative (TN) - a number of false/irrelevant instances that were not re-
trieved. The number of instances that are irrelevant/false and indicated as such
by the algorithm.

A visual explanation of these metrics can be seen in Figure 3.7.

Figure 3.7: Confusion matrix with graphical explanation of true positives, false posi-
tives, false negatives and true negatives

Formulas for calculating precision and recall are presented in Equations 3.1 and
3.2. F1-score is a metric that combines precision and recall (Feldman & Sanger 2007).
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The formula for calculating F1-score is presented in Equation 3.3.

Precision =
T P

T P+FP
(3.1)

Recall =
T P

T P+FN
(3.2)

F1− score =
2∗Precision∗Recall

Precision+Recall
(3.3)

Precision and recall are commonly used measures in information extraction and
information retrieval communities because they deal with different types of errors and
can be viewed for each variable. Therefore, they can provide a valuable insight into
the performance of the system.

Other measures are also used in information extraction community, such as accu-
racy. However, since accuracy is a measure of correctly classified instances over all
instances, in some cases it can provide a misleading insight, especially with unbalanced
datasets.

Silva (2010) argued that precision and recall are not the best measures of table and
so proposed new measures:

• Completeness – a proportion of completely identified elements with respect to
the total number of real elements; for example, in order to be completely identi-
fied, a column must contain all of its cells.

• Purity – a proportion of fully detected elements with respect to the total number
of detected elements; a pure element is one whose components belong to only
one original element.

Silva’s measures are more lenient than precision and recall, as they measure partial
match to the expected template. Therefore, it may be that these measures were invented
in order to boost the results of the presented method.

In this work, we will follow the majority of information extraction community and
precision, recall, and F1-scores as our evaluation metrics. The insights of these metrics
depend on how the data is selected. The evaluation data should be a representable
sample. In case there is a selection bias or the evaluation dataset is too small, even
these measures can give misleading insights about the performance of the evaluated
system.
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For evaluating and fine-tuning of the methodology, usually, initial data set is split
into a training and testing (validation) set (a method often referred as holdout valida-

tion). A training set is used either in machine learning for training the model or to
fit the rules. A testing set should be unseen until the model is created or satisfactory
rules are created. Then the method is evaluated against unseen testing set (Kohavi et al.
1995). The testing set should remain representative of the whole dataset. In case it is
not representative, the evaluation might be biased. Therefore, it is necessary to select
representative and large enough sample for both training and testing set.

Leave-one-out cross-validation, N-fold cross-validation (most often 10-fold cross-
validation) is a method in which evaluation dataset is split into N parts, trained on
N-1 parts and tested on the last part. This is performed N times, each time testing on
the different part of the dataset and training on the other parts. Using this method,
the whole dataset is used for testing, without any data point being used for training
and testing in the same validation cycle (therefore method remaining unbiased in that
regard (Kohavi et al. 1995)). This method can be used with relatively small datasets,
where the split dataset may not be representative (Cawley & Talbot 2003). However,
since all the data is used for evaluation, the performance of all distinct kinds of data
points will be captured. It is still necessary to ensure that the whole evaluation set is
representative.

3.5 Case studies for methodology validation

To test and validate our method, we used two datasets consisting of clinical trial doc-
uments and drug labels. The first dataset consists of clinical publications stored as
open access in PubMedCentral1. The second dataset consists of drug labels. We have
designed three case studies in order to develop and validate our methodology.

The first case study was designed for the development of the methodology. In this
case study, we wanted to extract number of patients, their age, gender and adverse
events that happened during the described clinical trial. We used clinical trial articles
from PubMedCentral database for this study.

The second and third case studies were designed to validate the methodology. The
second case study was designed in collaboration with AstraZeneca in order to take into
account industrial needs for information extraction from biomedical tables. The goal of
the study was to extract relevant information from the clinical trials about asthma and

1http://www.ncbi.nlm.nih.gov/pmc/
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chronic obstructive pulmonary disease (COPD). We extracted reported measurements
from several lung function tests (spirometry) tests, such as forced expiratory volume in
one second (FEV1) and peak expiratory flow (PEF). Additionally we extracted results
of several quality of life questionnaire such as asthma quality of life questionnaire and
Saint George respiratory questionnaire.

In the last case study, we tried to validate methodology on extracting drug-drug in-
teractions from tables in drug labels. The dataset was created by selecting drug labels
that report drug-drug interaction in DailyMed database2, maintained by the US Na-
tional Library of Health. The motivation for this case study was twofold – to examine
generalisation of the methodology on different datasets (XML formats) and to explore
application of information extraction method for relationship extraction.

3.6 Data curation and querying interface

The information extraction engine is the first step in our semi-automated data curation
pipeline. For potentially erroneous extractions, a data curation interface is necessary
that would allow human experts to check the extracted data and if necessary, correct,
add or delete information. Data curation is a key for practical applications in which
data quality is important. The main purpose of the data curation engine is to provide
a user-friendly interface for human experts to review and edit previously extracted
information.

There are two points at which a data curation interface can be useful: after struc-
tural disentangling and after information extraction. Information extraction is depen-
dent on the structural disentangling part of the process. Because of this dependency,
high-quality information after disentangling will ensure higher information extraction
efficiency. At this step, the user can correct wrongly labelled, functional annotations.
A similar method applies to information extraction. In order to achieve high quality of
extracted information, a curator should review, check and correct extracted informa-
tion. This can be done by reviewing data in the database (for an expert user), or by
using a web interface crafted for this purpose.

When the data are extracted and reviewed by human experts, they may be used
by a broader user base. Then, users can query the data store in order to find relevant
information.

2https://dailymed.nlm.nih.gov/dailymed/
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3.7 Summary

An overview of the information extraction and data curation from biomedical literature
tables’ methodology is presented in this chapter. Further details about the methodol-
ogy and its evaluation will be provided in the following chapters. The methodology
consists of two main parts: an information extraction engine and a data curation and
query interface. The methodology for information extraction contains seven steps: (1)
table detection, (2) functional analysis, (3) structural analysis, (4) pragmatic analy-
sis, (5) semantic tagging, (6) cell selection and (7) syntactic analysis and information
extraction. Since functional and structural table analysis is crucial for further table
mining tasks, we propose a curation interface able to visualize tables with functional
areas that a curator can correct and ensure the quality of data. In order to perform
information extraction, it is necessary to use and develop tools that perform these steps
well. We propose an annotation step, consisting of semantic tagging and pragmatic
analysis (pragmatic annotation of the table) that will help further table understand-
ing tasks and information extraction. After table and cell annotation, it is possible to
use annotated data for multiple tasks, such as information retrieval, table querying,
information extraction and table reading for visually impaired people. In this thesis,
we focus on information extraction, for which we propose a flexible and easy-to-use,
rule-based framework. As part of the framework, we propose a recipe and generic cor-
responding methodology for biomedical literature information extraction. Our recipe
prescribes the knowledge users need to feed into the corresponding methodology to
perform successful information extraction. In the following chapters, we describe our
methodologies in more detail: functional and structural analysis in Chapter 4, prag-
matic table analysis and semantic tagging in Chapter 5 and cell selection and syntactic
analysis of the content in Chapter 6.



Chapter 4

Disentangling the structure of tables*

Disentangling table structure comprises of reading the table from a presentation
document, transforming it to a computational representation, distinguishing functional
areas and resolving functional relationships between table cells. The disentangled
structure is stored in a computational format, such as a relational database.

In this chapter, we first describe a model for computational representation and han-
dling of tables. Then we describe a method to locate navigational areas of the table in
the PMC XML format and resolve functional relationships between table cells.

4.1 Model for representing tables

Since current table models focus mainly on visualization for human readers, we pro-
pose a model for computational processing, which is comprised of two components:

• Table types that includes common structural types that determine the way of
reading the table;

• A data model that represents the table structure and data in such a way that data
can be automatically processed (including mining and visualization).

* Parts of this work have been published in Milošević, N., Gregson, C., Hernandez, R. and Nenadić,
G. Disentangling the Structure of Tables in Scientific Literature. In International Conference on Appli-
cations of Natural Language to Information Systems (pp. 162-174). 2016, June. Springer International
Publishing. DOI: 10.1007/978-3-319-41754-7 14

77
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4.1.1 Table types

We define three main structural table types with several sub-types based on table di-
mensionality. The identified table types were motivated by the work by Wright & Fox
(1970), who identified one-dimensional (list) and two-dimensional (matrix) tables. We
extended this work and our table types include:

• One-dimensional (list) tables are described by a single label. The label is usu-
ally placed in the header (see Figure 4.1). One-dimensional tables may have
multiple columns representing the same category, where a multi-column struc-
ture is used to save space (see Figure 4.2).

Figure 4.1: Example of a list table (PMC 161814)

Figure 4.2: Example of a list (one-dimensional) table with multiple columns (PMC
420259)

• Two-dimensional or matrix tables have data arranged into a matrix, usually
categorized by two labels: a column header and row header (stub). Example of
a matrix table can be seen in Figure 4.3. In our model, these tables may have
multiple layers of column or row headers. One header layer may specify the
headers above it (see Figure 4.7).

• Multi-dimensional tables contain more than two dimensions. We identify two
types of multi-dimensional table:
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Figure 4.3: Example of a matrix table (PMC 65527)

– Super-row tables contain super-rows that group row headers below them
(see example in Figure 4.4). A super-row table can have multiple layers of
super-rows forming a tree-like structure. This structure is typically visu-
ally presented with an appropriate number of white spaces in front of each
stub’s label.

Figure 4.4: Example of a table with tree like super-row structure. This table has two
super-row levels in its stub (PMC 32172)

– Multi-tables are composed of multiple, usually similar tables, merged into
one table. In some cases, headers of concatenated tables inherit some cat-
egorization from the header of the first table. An example of a multi-table
can be seen in Figure 4.5.

4.1.2 Table data representation model

The proposed table data representation model captures necessary information for the
understanding of tables to facilitate further processing and knowledge gathering. We
have extended the data model by Wei et al. (2006) and the spreadsheet ontology for
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Figure 4.5: Example of a multi-table (PMC 57003)

tables (Doush & Pontelli 2013) by adding additional entities that are not specific for
navigation in screen readers, as table types, annotations and/or references to the navi-
gational cells.

The model has article, table and cell layers (see Figure 4.6), which are arranged
in a tree-like instantiation with the article node as the top element, containing article
information (i.e. title, references, authors, text) and a list of its tables. The article layer
also stores where tables are mentioned within the document.

The table layer stores caption, footer, the order of the table in the document, its
structural type (dimensionality of the table, as defined in Section 4.1.1), pragmatic
type and sentences referring to the table. The table node also contains a list of the
table’s cells.

Finally, at the cell layer, the model stores the information about each cell including
its value, function and position in the table. At the cell layer, the model also stores
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Figure 4.6: Proposed table representation model

information regarding its structural references to the navigational cells (headers, stubs,
and super-rows). If navigational cells contain multiple layers, we apply a cascading
style of cell referencing, where lower layers (closer to the data cell) reference the
higher order layer (see Figure 4.7). The references to navigational cells are set by the
ID of the closest cell in the navigational area. In this layer, the model further captures
any possible annotations of the cell content, which might be added during the table
processing. Annotations may be syntactic, giving information about the type of value
inside the cell, or semantic, mapping to a knowledge source (e.g. ontology or the-
sauri such as UMLS (Bodenreider 2004)). For each annotation, the model can record
the span positions of annotated parts in content, concept names, IDs in the lexicon or
ontologies with which the text was annotated, a name of the annotation knowledge
source, its version, and environment description. Name of the knowledge source, its
version and environment description are information about the provenance of the an-
notations. In the case of annotating with multiple knowledge sources and different
versions, this information can be important to distinguish the sources of annotations so
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as to use the most appropriate.
Entities from the table layer are summarised in Table 4.1, while the entities from

the cell layer are presented in Table 4.2.

Name of the entity Description
Cells A collection of table cells
Table order Order/position of the table in the document
Table caption The caption of the table describing the table and its content
Table footer The footer of the table presenting additional information about the data
Table structural type The structural type of the table (list, matrix, super-row, multi-table)
Table pragmatic type Domain-dependent pragmatic type describing the type of information

presented in the table

Table 4.1: Description of the table entities in the table data representation model

Name of the entity Description
Cell value The content of the cell
Cell ID Unique ID of the cell in the table
Cell type Content type of the cell (numeric, partially numeric, text, empty)
Cell roles Functional role of the cell in table (header, stub, super-row, data)

One cell can have multiple roles (e.g. super-row and stub)
Row number Number of the row in which cell is located
Column number Number of the column in which cell is located
Header reference Reference to the closest header cell, if available
Stub reference Reference to the closest stub cell, if available
Super-row reference Reference to the closes super-row, if available
Annotation Annotations of the cell and its content.

Table 4.2: Description of the cell entities in the table data representation model

We note that spanning cells in the model are split and the content of a cell is copied
to all cells that were created in the splitting process. Column, row numbers, and cell
ids are assigned after the splitting of spanning cells.

4.2 Methodology for automatic table structure disen-
tangling

We propose a methodology that automatically performs the functional and structural
analyses of tables in PMC documents. The method uses a set of heuristic rules to
disentangle tables and transform them into the previously described table model. The
overview diagram of the methodology is presented in Figure 4.8.
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Figure 4.7: Example of cascading referencing of the header relationships (PMC
270060). The cell with the value 56 is linked to the header ”Intervention”, which
is linked to the upper header ”Pre-intervention”.

Figure 4.8: Overview of the methodology for automatic table structure disentangling

4.2.1 Reading the articles

The first step of our methodology is to read the article XML files, locate and extract ar-
ticle metadata and locate the tables. The methodology of locating metadata and tables
in the article can be dependent on the format of the article. Therefore, our architecture
contains an abstract ”reader”, that goes through the set of documents locating article
metadata and tables. For practical reasons, the responsibility of the reader is to extract
table data from the document into a data structure (cell matrix), which is then further
processed. We focus on XML formats for presenting literature in the biomedical do-
main, and readers for PMC and DailyMed documents were implemented, because of
the two case studies evaluated in this thesis. It is possible to extend the methodology
to other formats by implementing other reader methods.

4.2.2 Identification of functional areas (functional analysis)

The aim of functional analysis is to identify functional areas (headers, stubs, super-
rows, data cells) within the table.
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Figure 4.9: An example of PMC XML table and its visual representation

Header identification. Table headers can be recognized through both visual and po-
sitional features (first row, font emphasis, empty cells, spanning cells, line below it) or
by semantic features. In certain datasets (e.g. PMC) it is possible to rely exclusively
on visual features, while in others (e.g. DailyMed), authors may not use visual features
to emphasize headers and the only way to recognize a header is to rely on the content
of the table and its semantics.

Our main header detection approach relies on visual and positional emphases in
the table. Headers in XML documents are often marked using a thead XML tag. If
thead tag exists, we assume that it is correctly used.

We examine syntactic similarity of the cells over the column in tables that do not
have annotated headers. This is performed using a window that takes five cells from
the column and checks whether the content in the window has the same syntactic type
(i.e. string, single numeric value (e.g. 13), numeric expression (e.g. 5±2), or empty).
If all cells are of the same syntactic type, we assume that the table does not have a
header. However, if the cells are syntactically different, for example the first two cells
are strings while the rest are numeric, we move the window down until it reaches the
position where all cells in it have the same syntactic type. The cells above the window
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are marked as header cells. The window size of five cells is chosen based on experi-
mental experience: we have encountered tables that had up to four rows of headers, so
the window size needs to be large enough to capture syntactic type differences. The
algorithm then marks as header only rows with all cells marked as headers.

Another heuristic for determining header rows is to check whether some of the first
row cells span over several columns. If they do, we assume that the header contains
the next rows, until we reach the first one with no spanning cells.

Headers in multi-tables are usually placed between horizontal lines. Only the first
header is usually marked with thead tags. If multiple cells between the lines have
content, these cells are marked as header cells. However, if only one cell has content,
these cells are classified as super-rows.

The previously described rules are able to detect headers in tables that emphasize
headers in a certain way. For PMC articles it is common to have emphasised headers.
However, not all datasets present headers in this manner. For example, drug labels pre-
sented in DailyMed database do not have emphasis features in many tables. However,
since in our case studies, we were mainly interested in drug-drug interaction tables,
these tables have in headers relatively standardized vocabulary (e.g. drug, effect, type
of interaction, clinical class, interacting agent). The header vocabulary is rarely used
in other functional areas of the table. One approach could be to extract common words
used in headers (a common header vocabulary) and use them to recognize headers.
A more complex and accurate approach would be to use machine learning with con-
tent features of table functional areas. However, by using a vocabulary or machine
learning with features based on table content, we may lose our approach’s domain in-
dependence. A domain independent approach may look at the tags’ attributes. In many
cases, header cells that were not labelled using thead tag had attribute or class of the
tag pointing out that they may be a header (i.e. word ”first” as a class of td XML tag).
However, these attributes and classes are dataset specific. The presented approach is
able to disentangle the majority of tables presenting numerical, factual information,
even if the table is not labelled according to common practices. However, if the au-
thors did not make a separation between header and data areas and the table presents
textual data, there is a way to distinguish headers by recognizing and learning vocabu-
lary often used in headers. In such tables, text semantics differentiates whether certain
cells describe data or present data.

A methodology for handling table datasets that do not emphasize headers relies
on combining the described methodology with a machine learning using the content
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of the header cells. Initially, our rule-based methodology tries to perform functional
analysis. Then we apply header detection using machine learning. We use machine
learning algorithms to learn probable combinations of words that are prevalent in that
domain as headers. The classifier takes into account words (e.g. using a bag-of-words
model) from the top-most row (or multiple rows, up to three rows), as features. Since
algorithm is classifying on a cell level, it may happen that cell may be classified as a
different class from the majority in a given row. Rows in tables may be either fully
header rows, or non-headers. We added a heuristic that detected cells classified as data
cells inside a row that contained a majority of header cells and fixed their label. A
similar heuristic detected cells labelled as headers in data rows.

Stub identification. We use a heuristic that marks cells that are in the left-most col-
umn as stub. However, if cells in the left-most column are row spanning, the stub area
contains the next columns, until the first column with no spanning cells is identified.

Super-row identification. Super-rows are rows that group and categorize stub la-
bels. They can have multiple layers. In order to recognize super-rows, our method
uses the following heuristics:

• A super-row can be presented as cells that span over the whole row. If these cells
have non-empty content, they are labelled as super-rows.

• In some cases, spanning cells can be presented as a column with multiple cells
where only one cell has content (usually the leading one). Rows with only one
cell with content are labelled as super-rows.

• A table may have multiple layers of super-rows. Authors usually present a sub-
group of relationships with leading blank spaces (indentation) at the beginning
of the grouped elements (e.g. Figure 4.4). The number of blank spaces often
determines the layer of categorisation (i.e. the first layer usually has one blank
space, the second has two, etc.). In other words, the indentation level visually
structures the super-row and stub layers. The row with a label that has less
blank spaces than the labels in a stub below categorises them and is therefore
considered their super-row. Since there can be multiple levels of super-rows,
we used a stack data structure in order to save the associated super-rows of the
currently processed cell.
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Cells that were not identified as headers, stubs or super-rows are labelled as data
cells.

4.2.3 Identification of inter-cell relationships (structural analysis)

Using the detected functional areas, the method classifies tables into one of the four
structural classes (one-dimensional, matrix, super-row, multi-table). This classification
is based on a set of rules about the functional areas of the table. For example, if the
table contains multiple headers, it is classified as a multi-table. If it contains super-
rows, it is a super-row table. If the table has only one dimension (table containing
only one column or header spanned over all columns), it is a list table. Otherwise, it is
matrix table.

The method further decides which inter-cell relationships to search for depending
on class. For example, data cells in one-dimensional tables can contain only headers;
in matrix tables they contain relationships with stubs and headers, while in super-
row tables they contain an additional relationship with the super-rows, which may be
cascading with multiple layers. Data cells are related to header cells above, stub cells
on the left and super-rows above. One additional relationship of data cells is with the
stub-head cell, which can further describe the stub. Navigational cells are related to
the higher layers of navigational cells as defined in the cascading referencing model
(as explained in Section 4.1.2 and in Figure 4.7).

An example of the decomposition is presented in Figure 4.10. The decomposition
of the table is a basis for further analysis. Our definition of the task makes a graph
of related cells. However, this graph can be linearized, presenting table data with
labels describing them in a linear representation. The linear model, also referred to by
other authors as canonical representation of tables, was introduced by Wang & Wood
(1993) and later used by Hurst (2000), Embley et al. (2006), Douglas et al. (1995) and
others. Linear or canonical form presents data in the linear form, one line per data cell
consisting of navigational cells (stub-head, headers, stubs and super-rows) related to
the given data cell and the data cell.

In the presented methodology, relationships are disentangled for each cell. For
each cell, outputting related labels in a certain order or format would output a table in
canonical form. For the data cell coloured green in a bottom table of the Figure 4.10,
canonical form will look in the following manner:

([sh]Parameter:)([sr]Primary diagnoses (n):)([s]Head trauma with coma:)([h]Value:)

([d]8)
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Figure 4.10: Functional and structural analysis on an example table. The diagram
shows step by step labelling of a table. During functional analysis, functional areas are
labelled (header - yellow, stub - blue, super-row - orange, data - green). During the
structural analysis, related cells are found for each cell. The example shows related
cells of data cell with a content 8.
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In the example, the output in square brackets represents cell function (i.e. sh -
stub header, sr - super-row, s - stub, h - header, d - data). Next to the cell function is
presented the content of the relevant cell, related to the described data cell.

However, our data model contains additional entities, such as annotations. It is also
able to reflect and recreate the visual structure of tables, since the arrangement of the
cells are included in the model. The proposed data model can be converted to multiple
table representations, including Wang’s canonical or visual representation. The model
is implemented as relational database. A database schema that reflects our data model
and stores disentangled tables after functional and structural disentangling is presented
in Appendix B.

4.3 Results and Evaluation

4.3.1 Datasets

We have created two datasets that reflect two different data sources. These two datasets
are motivated by the case studies about information extraction in clinical trial docu-
ments and extraction of drug-drug interactions in drug labels. These case studies were
briefly described in Section 3.5.

For the first case study, we collected a clinical trial dataset by filtering 2014 PMC
data for clinical trial publications. Clinical trial publications are useful in drug dis-
covery and drug management, often reporting important information in tables, such as
participant characteristics, adverse events or results. Therefore, clinical trial publica-
tions were chosen as an appropriate case study. The dataset was created by mapping
PMC articles with MEDLINE citation that contained word ”clinical” in publication
type. This dataset contains 6,109 articles with 14,009 tables. For the second case
study, we created a drug-drug interaction dataset containing 1,284 structured product
labels from DailyMed that had tables present in the Drug Interaction section. This
dataset was created to test the methodology in a different domain and with a different
document structure.

The performance of the table disentangling process has been mainly analysed from
the perspective of the clinical trial dataset. However, we have also evaluated a small
sample of drug label documents in order to present challenges for the table disentan-
gling methodology when applied to the different dataset. Our evaluation has been
performed on sample of 100 clinical trial documents and sample of 30 drug labels.
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Clinical trial dataset

The clinical trial dataset contains 6,109 PMC articles from the clinical domain. The
articles were published between 1965 and 2013. However, articles published before
1997 are not always transformed to XML. Their XML contains metadata but the body
of the article is often in scanned pictures. Therefore, tables from these articles cannot
be extracted without the use of OCR, which lies outside the scope of this thesis. In
total there are 4,435 articles (72% of total number) that were presented with the body
of the article in XML and that contain at least one table. Figure 4.11 shows the num-
ber of articles in the dataset and the number of articles presented in XML containing
tables, per year of publication. From 2002 onwards, approximately 85% of the articles
presented are in XML and contain tables. Between 1997 and 2002, it is apparent that
the process of presenting PMC articles in XML was in an adaptation phase. From 1997
to 2000, only about 10% of articles were presented in XML. In 2001, the percentage
of articles presented in XML grew to about 20%, and finally in 2002, this presentation
format was adapted to the majority of PMC articles, with 83% of articles presented in
this manner.

Figure 4.11: Number of PMC articles and the number of PMC articles with at least
one table in XML. Statistics of PMC clinical trial dataset

There are 14,009 tables in this dataset. On average there are 3.12 (with standard
deviation 0.3) tables per PMC article. Therefore, in clinical trial publications there is a
relatively constant number of tables per publication over time. The yearly distribution
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of tables and the yearly average number of tables per document since 1997 can be seen
in Figure 4.12.

Figure 4.12: Number of tables per year and average number of tables in PMC clinical
publications

Drug-drug interaction product label dataset

The drug-drug interaction product label dataset was created in order to perform a case
study on drug-drug interaction information extraction. The dataset documents were
downloaded from the DailyMed website1 and only documents with tables presenting
drug-drug interactions were selected. The dataset contains 1,284 structured product
label (SPLs) documents published between January 2006 and January 2015. It contains
16,211 tables, where each document contains at least one table. The documents in
this dataset have between 1 and 37 tables, however, over 90% of documents contain
between 4 and 23 tables.

Statistical information about datasets are presented in Table 4.3.

Dataset No. documents No. tables Mean Standard deviation Range
Clinical trials 6,109 14,009 3.12 0.32 0 - 15
Drug labels 1,284 16,211 12.62 6.55 1 - 37

Table 4.3: Statistical data about tables in the datasets. Mean, standard deviation and
range are presented per document

4.3.2 Table disentangling performance

We evaluate table disentangling performance on the clinical trial and drug-drug inter-
action product label datasets. Our system was able to process 11,156 tables from the

1https://dailymed.nlm.nih.gov/



92 CHAPTER 4. DISENTANGLING THE STRUCTURE OF TABLES

clinical trial dataset (79.6%). The unprocessed tables were not in the XML format and
processing of non-XML tables is out of the scope of this thesis. Table 4.4 presents the
numbers of tables identified as belonging to different types. It is interesting that matrix
tables make up over 49.7% of tables and super-row tables over 43.5%, while list and
multi-table are quite rare at around 7%.

We performed the evaluation on a random subset of 30 articles containing 101
tables from PMC dataset. The evaluation sample contained tables from each table type
and was manually evaluated. The detailed information about the evaluation dataset
and the performance on structural table type recognition is given in Table 4.4. The
evaluation was performed manually by the author.

Overall List tables Matrix tables Super-row tables Multi-table
Number of tables 11,156 79 (0.7%) 5,546 (49.7%) 4,852 (43.5%) 679 (6.1%)
Number of evaluated 101 6 50 28 17

Table 4.4: Overview of the evaluation dataset

Table 4.5 presents the evaluation of the recognition of structural table types. We
have performed evaluation on each table structural type (class). Tables that were cor-
rectly classified as the target class were considered true positives (TP). Tables that were
classified as the target class but were of another class were considered false positives

(FP), while tables that were of the target class and labelled differently were consid-
ered false negatives (FN). We calculated precision, recall and F1-score. Overall, our
methodology for recognition of table structure produced a micro-averaged F1-score of
0.921. The most common case of misclassification was in super-row tables, in which
super-rows were separated using horizontal lines. Since horizontal lines commonly
separate headers of multi-table tables, they were often sources of confusion.

Table type TP FP FN Precision Recall F-score
List 6 0 0 1.000 1.000 1.000
Matrix 48 1 2 0.979 0.960 0.969
Super-row 23 3 5 0.885 0.821 0.852
Multi-table 16 4 1 0.800 0.941 0.865
Overall (micro-averaged) 93 8 8 0.921 0.921 0.921

Table 4.5: Evaluation of the recognition of structural table types

The results for the functional and structural analyses are presented in tables 4.6 and
4.9. We have performed evaluation at the cell-level. Associations to the right roles and
navigational relationships (headers, stubs, super-rows) were considered true positives
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(TP). Association to the incorrect roles or relationships were considered false positives
(FP) while missing association were considered false negatives (FN).

TP FP FN Precission Recall F-Score
Cell role – header 1,041 35 260 0.9670 0.8000 0.8760

List 1 0 0 1.0000 1.0000 1.0000
Matrix 469 9 0 0.9810 1.0000 0.9900
Super-row 275 18 20 0.9385 0.9322 0.9353
Multi-table 296 8 240 0.9736 0.5522 0.7047

Cell role – stub 1,250 87 22 0.9349 0.9827 0.9582
List 0 0 7 N/A N/A N/A
Matrix 407 1 3 0.9975 0.9926 0.9951
Super-row 488 17 4 0.9663 0.9910 0.9789
Multi-table 355 69 8 0.8372 0.9779 0.9022

Cell role – super-row 414 102 66 0.8023 0.8625 0.8313
List 12 7 0 0.6315 1.0000 0.7742
Super-row 359 26 27 0.9324 0.9300 0.9312
Multi-table 43 63 37 0.4057 0.5375 0.4624

Cell role – data 3,709 167 41 0.9569 0.9891 0.9727
List 31 7 6 0.8157 0.8378 0.8266
Matrix 1,438 1 12 0.9993 0.9917 0.9955
Super-row 1,517 11 21 0.9928 0.9863 0.9895
Multi-table 723 148 2 0.8300 0.9972 0.9060

Overall 6,414 391 389 0.9425 0.9428 0.9426

Table 4.6: Evaluation of functional table analysis on the evaluation dataset

For the functional analysis, the method archived an overall micro-averaged F1-
score of 0.9426, with the lowest performance on identification of multi-table super-
row areas. The results are comparable to previously reported methods. For example,
Hurst (2000) combined Naive Bayes, heuristic rules and pattern-based classification
archiving an F1-score of around 0.92 for functional analysis on tables in ASCII format
on general domain. Similarly, Tengli et al. (2004) reported an F1-score of 0.914 for the
table extraction task in which they recognized labels and navigational cells from tables
in Common Data Set (CDS) retrieved from the websites of the Universities, while
Wei et al. (2006) reported an F1-score of 0.9 for detecting headers using CRF on the
general domain. Cafarella, Halevy, Wang, Wu & Zhang (2008) detected navigational
cells with precision and recall not exceeding 0.89 and Jung & Kwon (2006) reported
0.821 accuracy extracting table headers, both evaluating on tables from the web in
HTML format.

We have tested this approach on other dataset, namely on drug label documents
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available on DailyMed. Table 4.7 presents the results of the functional analysis of
20 randomly selected drug-drug interaction tables from the drug labels dataset, as de-
scribed in Section 4.3.1.

TP FP FN Precission Recall F-Score
Cell role – header 61 39 32 0.6100 0.6559 0.6321
Cell role – stub 309 0 0 1.0000 1.0000 1.0000
Cell role – super-row 49 6 45 0.8909 0.5213 0.6578
Cell role – data 675 18 104 0.9740 0.8664 0.9171
Overall 1,094 63 181 0.9455 0.8580 0.9014

Table 4.7: Evaluation of functional table analysis on 20 drug-drug interaction tables
from DailyMed

The header and super-row detection results were significantly lower than those for
the PMC dataset, for which the approach was initially developed. There were 8 tables
in which the header was not recognized at all. These tables did not have any separation
between the header and the data area, no header XML tag, while headers and the cells
below them were textual (see example in Figure 4.14). In one table, our methodology
marked all the cells in the table as header cells (due to syntactic similarity of the cells).
There were 125 tables (about 10% of tables from the DailyMed dataset) that contained
thead tag, but in the tagged area they presented a caption (see Figure 4.13). In those
tables, often the second row – the first not marked as part of the heading area of the
table – was the actual table header. Overall performance was not affected much, since
stub cells were recognized in all cases. The DailyMed tables we analysed typically had
simpler stub structures than PMC tables. This is because all the tables analysed were
matrix, super-row or multi-tables with only one stub column.

We created a learning dataset by extracting headers classified by our initial method-
ology. The headers were then manually checked and labelled as headers or non-
headers. This data was then used to train and test a machine learning classifier (using
10-fold cross validation). The dataset contained 600 cell instances, 300 labelled as
headers and 300 labelled as non-headers. The machine learning approaches is com-
pared to the simple baseline approach that labels only the first row in the table as
header. In Table 4.8, we present the results of a machine learning algorithm for classi-
fying headers of drug-drug interaction tables from the DailyMed drug labels.

The baseline approach is recognising the header with an F1-score of 0.595. On the
other hand, the rule-based methodology detected headers with an F1-score of 0.632,
while the random forest algorithm produced an F1-score of 0.922. As this algorithm
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Figure 4.13: Example of the DailyMed table containing caption in the header cell.
Document SetID: a7a2a4e1-9ecd-4e59-82b5-2068b5e50164

Figure 4.14: Example of the part of the table presenting drug-drug interactions
from the DailyMed dataset. Document SetID: 6C08B50E-CC9F-4C49-D7AE-
F0FDDCB10199

classified the cell level, certain cells in header rows were classified as headers, while
some cells in data rows were also classified as headers. We also manually evaluated
header detection for 50 random drug-drug interaction tables. The manual evaluation
resulted in a slight drop of performance. The algorithm performed with 0.748 preci-
sion and 0.871 recall producing a 0.805 F1-score. These were still significantly better
results than our initial, rule-based methodology for the drug label dataset. Conse-
quently, we used these algorithms in our drug-drug interaction extraction case study,
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Precission Recall F-Score
Baseline 0.894 0.447 0.596
Naive Bayes 0.796 0.778 0.775
Bayesian Networks 0.797 0.727 0.709
SVM with SMO 0.917 0.913 0.913
C4.5 decision tree 0.715 0.715 0.715
Random forest 0.923 0.922 0.922

Table 4.8: Evaluation of header classifiers based on content for detecting header in
drug-drug interaction tables

as presented in Section 7.2.

The results of structural table analysis is presented in Table 4.9.

TP FP FN Precission Recall F-Score
References – header 5,402 768 47 0.8755 0.9913 0.9298

List 7 0 0 1.0000 1.0000 1.0000
Matrix 2,076 15 3 0.9930 0.9985 0.9960
Super-row 2,501 61 6 0.9761 0.9863 0.9895
Multi-table 818 692 38 0.5417 0.9556 0.6915

References – stub 4,982 147 0 0.9710 1.0000 0.9855
Matrix 1,788 14 0 0.9922 1.0000 0.9961
Super-row 2,057 95 0 0.9558 1.0000 0.9774
Multi-table 1,137 38 0 0.9670 1.0000 0.9835

References – Super-row 1,663 78 269 0.9552 0.8607 0.9055
List 29 0 6 1.0000 0.8285 0.9062
Super-row 1,456 66 215 0.9566 0.8713 0.9112
Multi-table 178 12 42 0.9368 0.8091 0.8682

Overall 12,047 993 316 0.9238 0.9744 0.9484

Table 4.9: Evaluation of structural table analysis on the evaluation dataset. Inter-cell
relationships are evaluated.

For the structural relationships, we have counted the number of relationships a cell
has. Each cell can have at most one relationship with the header, the stub and the
super-row. Evaluation has been done for each class. The system achieved an overall
micro-averaged F1-score of 0.9484 for the structural analysis task (see Table 4.9). By
comparison, system by Hurst (2000) scored 0.8121 recall and 0.8514 precision (on
general domain). It is important to note that input data in Hurst’s system were per-
fectly formatted, while the PMC data is sometimes not. To the best of our knowledge,
there is no other system that attempted to perform the combined task of functional and
structural table analysis.
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Error analysis

During the error analysis, we identified misleading markup and complex tables unique
to a specific paper in the evaluation set as the main reasons for errors. In PMC docu-
ments, XML markup features such as spanning cells, head tags and breaking lines are
often misused to make tables look visually appealing. In some tables for example, a
head tag is used to label only the first row of a multi-row header, while a horizontal
line divides the actual header from the body of the table (see example in Figure 4.15).
Although we have applied heuristics that can overcome some of the issues, some of
the misleading XML labelling remains challenging.

Figure 4.15: Example of the XML and table having mislabelled header (PMC 406425)

Furthermore, there are table structures that are not only complex but also their
structure is unique to a specific paper and thus difficult to generalize.

Our method made a significant number of errors on multi-tables since it is challeng-
ing to determine whether a row is a new header or just an emphasized row or super-row
just by analysing the XML structure (F1-score for header detection in multi-tables was
0.69). Example of table with misclassified cells due to multiple horizontal lines can be
seen in Figure 4.16. Errors recognizing headers or super-rows cause a large amount of
consequent false links in structural analysis, since relationships in the subsequent rows
are wrongly annotated. However, multi-tables are relatively rare so this did not heavily
affect the overall results.
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Figure 4.16: Example of the table that was falsely classified as multi-table due to the
presence of horizontal lines. The table is actually a matrix table. (PMC 3381636)

Limitations

The presented approach also has some limitations. The approach is developed for XML
documents and it embeds the tags and attributes that are used in the particular dataset.
It assumes that the majority of tables will be marked with appropriate header tags or
that there will be a clear differentiation between the header and the data area, such as a
horizontal line or a change in cell type (for example from textual to numeric). However,
this is not the case even with all table data presented in the PMC XML format. Also,
drug-drug interaction tables presented in drug label documents available through the
DailyMed website do not follow this assumption.

In the datasets that do not emphasise functional areas of the table in its XML for-
mat, it is possible to use machine learning. However, using machine learning, the
approach is no more domain independent. Machine learning approach learns what
words are often used in particular functional areas in the given document subset or
sub-domain. From the presented results, it can be concluded that machine learning
can help in recognising functional areas of the table, however, in order to be effective,
it has to be trained on a relatively narrow domain. Machine learning approaches can
generalise over multiple document stores, however, not over multiple domains. On the
other hand, rule-based approaches based on the layout and emphasis features (e.g. font
size, boldness, arrangement of lines, etc.) can be generalised over multiple domains,
but it is document store specific. Therefore, an approach can be either generalized for
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multiple domains in a single document store or over multiple document stores in one
domain. Unfortunately, different document stores from the same publishers may uti-
lize different attributes and tags in tables. Examples of this include the PMC and the
DailyMed document stores, which are both maintained by the US National Library of
Medicine.

4.4 Summary

In this chapter, we have presented a model to computationally represent tables found in
biomedical scientific literature. We also presented a domain-independent methodology
to disentangle tables and add annotations to functional areas (functional analysis) and
relationships between table cells based on table structure and emphasis features (struc-
tural analysis). In performing functional and structural analysis, the method transforms
tables from a presentation to the structured format in which information presented in
tables can be queried, analyzed and mined. Also, data in the structured format can be
easily transformed to a canonical form as described by Wang & Wood (1993) and later
used by Hurst (2000), Embley et al. (2006), Douglas et al. (1995).

The evaluation has shown that the table structure can be identified with high F1-
scores (above 0.94 on the PMC clinical trial documents, around 0.90 on DailyMed
drug-drug interaction table dataset). Even though we performed the main evaluation on
the PMC clinical trial documents, the proposed approach can be extended to include the
DailyMed documents, HTML or any other XML-like format. However, the method is
currently limited to XML formats. Other formats, such as PDF are possible to process
using this methodology after they have been converted to XML format.

The method can be extended for datasets that have to use a different approach for
some part (such as approach based on lexical cues or semantics of the data in order
to distinguish functional areas during functional analysis). Usually, XML documents
contain emphasis features in some form. However, each document store may use dif-
ferent tags or attributes in order to achieve emphasis (e.g. visual interpretation of
attributes or classes may be defined in a separate file, such as a css file). Therefore,
a reader for each dataset has to be developed. Alternatively, machine learning with
lexical and semantic features can be applied to help distinguishing functional areas.
However, machine learning has to be trained on a narrow domain in order to be effec-
tive. Therefore, the methodology can be either developed and generalised for multiple
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domains in a single document store (using emphasis and layout features) or for multi-
ple document stores within a single narrow domain (using machine learning and lexical
or semantic features).

The proposed model can serve as a basis to support information retrieval, informa-
tion extraction and question-answering applications and assist visually impaired people
to read tables. The following chapters will present a general methodology for informa-
tion extraction from tables in biomedical literature that uses the presented approach.
The methodology can also be used as a basis for semantic analysis and querying of
tables. For example, screen readers for visually impaired people could enable easy
navigation through tables by providing information about a cell’s relationships and
functions.



Chapter 5

Table and cell annotation

Table processing tasks, such as information extraction from tables require a multi-
layered approach, consisting of multiple processing steps or layers. In the previous
chapter, we examined functional and structural processing, that disentangle a table’s
structure and lay the foundation for further table mining tasks.

In this chapter, we examine further annotation steps. Table and cell content annota-
tions normalise table data, map table data to a certain knowledge source or classifica-
tion and reduce search space for further tasks (e.g. information extraction, information
retrieval or question answering). Similarly to text annotation (Aronson & Lang 2010),
annotation of the table content is domain dependent, but it is task independent. Table
annotations can be useful in multiple table mining tasks. In this chapter, we exam-
ine the pragmatic analysis (pragmatic processing) and cell content annotation using
knowledge sources – semantic tagging.

The idea of pragmatic analysis is to classify tables based on the information they
present. Certain variables are often grouped together across the documents. For exam-
ple, authors usually group into one table information presenting baseline characteris-
tics, adverse reactions, inclusion and exclusion criteria or results of the the experiment.
This grouping can be identified, used for narrowing the scope for information extrac-
tion and reducing false positive matches. It can be also reused for multiple information
extraction tasks.

On the other hand, the main idea of the semantic tagging of the cell content is to
map content of cells to the concepts in the domain specific knowledge sources. By do-
ing this, table content is normalised (e.g. various synonyms or different terminologies
are mapped to the same concept) and by using ontologies content obtains an additional
semantic layer that can be further exploited in the later tasks (e.g. filtering by higher
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level concept in ontology or semantic type).

5.1 Pragmatic analysis

Pragmatics is the study of how context and the way information is communicated con-
tributes to meaning (Leech 2016). In the case of tables in the literature, we consider
pragmatics to analyse the author’s intentions regarding the context and the purpose of
the table.

Usually, authors intentionally group certain information, such as demographic in-
formation, adverse events or inclusion and exclusion criteria. The main purpose of
pragmatic analysis is to identify a target table where the information of interest is lo-
cated, narrowing the search space for information of interest and reducing the number
of false positives. Generally, pragmatic analysis can be seen as a task of finding topics
(topic modelling) of the information presented in a table. Since the classes (topics)
are associated with the whole table, we design table pragmatic analysis as a table level
annotation task.

Pragmatic analysis of the tables can be performed using rule-based and machine
learning approaches, depending on the structure of the analysed documents. For ex-
ample, in drug labels, it is possible to develop rules that will select only tables in a
certain section (e.g. drug interactions, adverse reactions, dosage and administration,

etc.). The drug labels are well structured into topic related sections where relevant
tables can be found. However, in different scientific publications tables presenting
the same variable group (e.g. baseline characteristics, or adverse reactions) can be in
different sections. Therefore, it is not possible to select relevant tables based on rules.

For documents where it is challenging to develop a rule-based approach for prag-
matic analysis, we propose a machine learning classification method that analyses cap-
tions and the variables presented in a table, with an aim to determine the purpose of
a given table and the types of information stored in it. Since the proposed methodol-
ogy utilises supervised machine learning, firstly, it is necessary to define the classes
of tables and manually annotate a set of table to be used as training set. The classes
of tables should reflect variable groups that are commonly presented together (e.g.
baseline characteristic variables, such as number of patients, their age, gender, weight,
height, body mass index are commonly presented in one table). Defining pragmatic
table classes may take into consideration potential future tasks (e.g. information ex-
traction or retrieval). Once the pragmatic classes are defined, it is necessary to annotate
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a set of tables that are later used for training machine learning method. The machine
learning considers content of the caption, footer, referring sentences to table, cells and
their function as features.

5.1.1 Pragmatic analysis case study

Figure 5.1: Examples of tables for each pragmatic class defined in a clinical trial case
study

In order to test and evaluate how different parts of the table contribute to pragmatic
classification, we designed a case study of clinical trial articles. Since the informa-
tion extraction case study, mentioned in Section 3.5, considers mainly extraction of
baseline characteristics (patient number, age, FEV1, PEF, etc.) and adverse reactions,
table classes reflect the requirements of the case study. Possible tables classes for
the clinical trial case study are ”baseline characteristics”, ”adverse events”, ”inclu-

sion/exclusion criteria” and ”other” (see examples in Figure 5.1). Our dataset for
pragmatic classification contained 186 tables labelled as baseline characteristic tables,
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60 inclusion/exclusion criteria tables, 239 adverse event tables and 153 classified as
others. The tables were randomly selected from the PMC clinical trial dataset and
were manually reviewed and classified by the author. As features, we used words and
semantic annotations from the caption, column; row headings and sentences referring
to a table, the number of rows and number or columns that the table has. A number of
machine learning algorithms were tested, including Naive Bayes, SVM, decision trees,
random tree and random forest in Weka toolkit (Hall et al. 2009). The evaluation was
performed using the 10-fold cross-validation.

Furthermore, we analysed how the content of various table areas (headers, stubs,
data, super-row, caption) and referring sentences contribute to pragmatic classification.
For this, we developed separate classifiers for each feature and evaluated them. We
have also created a classifier that combines the proposed features.

5.1.2 Evaluation

The results of the pragmatic classification experiments are presented in Table 5.1.

Caption and stubs are good features for the pragmatic analysis. This is expected
as a caption’s purpose is to describe the table and its content. Caption often describes
what information is grouped together. On the other hand, stubs contain concept names
that, when grouped together, can help identify a table’s pragmatic type. Other features
were not as successful in predicting pragmatic type. The header information usually
contains names of clinical arms or drugs, which is not as relevant for the pragmatic
analysis. When a header is used only as a content feature, it achieves F1-scores be-
tween 0.618 and 0.66 depending on the algorithm used. The data cells’ content presents
concept values, but little can be concluded from these values without the descriptions
from a table’s navigational areas. As expected, F1-scores for data cells as the only
content feature are lower, in a range of 0.551-0.587. Referring sentences sometimes
describe tables but more often, they analyse or compare the results or just refer to the
table (e.g. ”See table X”). From the analysis, comparison or reference often cannot
infer the purpose of the table without additional information. Referring sentences’
F1-scores range between 0.573 and 0.626. Super-rows can be as good classification
feature as stubs (of which they are a part) however, many tables do not contain super-
rows. Therefore, when only super-rows are used as content features, the F1-score
produces a range of 0.373 - 0.490.

The final classifier used some of the content features, such as stub, caption, header
content and quantitative features, such as number of columns, number of rows and
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Algorithm Precision Recall F-Score
Caption text

Naive Bayes 0.901 0.902 0.901
Bayesian Networks 0.907 0.905 0.906
SVM 0.930 0.930 0.930
C4.5 Decision tree 0.926 0.925 0.926
Random Forests 0.889 0.889 0.888

Header text
Naive Bayes 0.687 0.654 0.660
Bayesian Networks 0.682 0.634 0.642
SVM 0.648 0.631 0.635
C4.5 Decision tree 0.659 0.612 0.620
Random Forests 0.646 0.628 0.618

Stub text
Naive Bayes 0.821 0.796 0.801
Bayesian Networks 0.841 0.802 0.807
SVM 0.808 0.772 0.776
C4.5 Decision tree 0.821 0.779 0.783
Random Forests 0.803 0.776 0.780

Super-row text
Naive Bayes 0.568 0.477 0.461
Bayesian Networks 0.696 0.440 0.490
SVM 0.526 0.448 0.373
C4.5 Decision tree 0.691 0.508 0.476
Random Forests 0.694 0.537 0.514

Data cell content
Naive Bayes 0.573 0.556 0.551
Bayesian Networks 0.572 0.568 0.567
SVM 0.604 0.586 0.587
C4.5 Decision tree 0.560 0.551 0.551
Random Forests 0.603 0.592 0.587

Referring sentence
Naive Bayes 0.726 0.590 0.618
Bayesian Networks 0.698 0.618 0.625
SVM 0.682 0.625 0.626
C4.5 Decision tree 0.630 0.575 0.573
Random Forests 0.675 0.622 0.617

Combined content features
Naive Bayes 0.873 0.871 0.872
Bayesian Networks 0.865 0.864 0.864
SVM 0.915 0.914 0.914
C4.5 Decision tree 0.883 0.880 0.881
Random Forests 0.917 0.915 0.916

Table 5.1: Weighted averages for all classes of the pragmatic classification using dif-
ferent content feature sets (each content feature separately and all features combined).
The evaluation was done using 10-fold cross validation.
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order of the table in the article. We used an SVM classifier with the results published
in Table 5.2.

Algorithm Precision Recall F-Score
Naive Bayes 0.943 0.943 0.943
Bayesian Networks 0.938 0.939 0.938
C4.5 decision trees 0.944 0.945 0.944
Random tree 0.905 0.903 0.904
Random Forests 0.948 0.948 0.948
SVM 0.967 0.966 0.966

Table 5.2: Results of the four-class pragmatic classification experiments on the PMC
clinical trial tables. Training and evaluation was performed using the 10-fold cross-
validation on 186 ”baseline characteristic”, 60 ”inclusion/exclusion”, 239 ”adverse
event” and 153 ”other” tables.

The PMC clinical trial dataset has 6,558 articles containing 12,787 tables. The
distribution of tables, according to our pragmatic classification model, is presented in
Table 5.3. Articles often present tables with participant baseline characteristics. On the
other hand, inclusion and exclusion criteria are rarely presented in tables (more often
found in text rather than tables).

Table type Number of table (percent)
Baseline characteristics 2,803 (21.92%)
Adverse events 633 (4.95%)
Inclusion/Exclusion 82 (0.47%)
Other 9,291 (72.66%)

Table 5.3: Distribution of tables in PMC clinical trial dataset based on their pragmatic
class

The pragmatic classification in this case study is crafted towards information ex-
traction of baseline characteristic, inclusion/exclusion and adverse event variables. The
majority of table fall under ”other” class (72.6%), however, this is not a problem, as
the tables needed for the further information extraction step are tagged. The number
of classes can be extended in case other information is required for extraction.

We also tested an approach in which we defined the pragmatic classes more broadly
(”experimental settings”, ”experimental results”, ”supporting knowledge” that in-
cluded literature review, definitions of scales, terms or examples, and ”others”). Adopt-
ing this approach, the machine learning algorithm’s best performance produced an F1-
score of 0.85, approximately 10% worse than specifically defined pragmatic classes.



5.2. SEMANTIC TAGGING 107

The broader classes have a larger vocabulary of terms and cues used in tables, which
makes it more difficult to learn class terminology.

5.2 Semantic tagging

The purpose of semantic tagging is to enrich the content of a cell by mapping its con-
tent to a concept in a knowledge source such as an ontology, domain specific vocab-
ulary or terminology. Enriching cell content with concepts from knowledge sources
normalizes the cell content by mapping synonyms and different terminological items
to the same concept in the knowledge source. Further, semantic tagging enriches data
with information detailing relationships between terms and concepts, as defined in a
given knowledge source. This allows knowledge-driven text mining approaches to be
developed. Semantic resources allow for normalization at more general levels of rep-
resentation (Nédellec & Nazarenko 2005). For example, it is possible to query or filter
cells with more general concepts than those presented in the table (e.g. a pharmaco-
logical substance is hierarchically above particular names of drug substances, so it is
possible to select all pharmacological substances without naming them). Mapping of
the content to ontology, domain specific terminologies and vocabularies prove to be
significantly useful for further text and table mining tasks, especially information ex-
traction and knowledge discovery (Xu et al. 2010, Mulwad et al. 2013, Limaye et al.
2010).

In order to perform semantic tagging of table cells, we developed a semantic tag-
ging methodology that utilizes pre-existing knowledge sources. At the time of writing,
the developed method supports tagging with UMLS (Bodenreider 2004), DBPedia
(Lehmann et al. 2015), WordNet (Miller 1995) and vocabularies in Simple Knowl-
edge Organisation System (SKOS) format (Bechhofer & Miles 2009). The tagging
methodology iterates through the table cells and tags the content with a selected knowl-
edge source. When UMLS is applied, the method sends the content of the cell to the
MetaMap server (Aronson 2001), which returns annotations. Word sense disambigua-
tion is performed by the MetaMap. When DBPedia is applied, the method queries
defined SPARQL interface. The queries are made for unigrams, bigrams and trigrams.
Longer sequence of tokens are not queried, as they are rare in DBPedia and it signifi-
cantly increases speed of the tagging.

SKOS vocabularies and WordNet are similarly queried. However, if there are mul-
tiple entities for the same sting, a modification of the Lesk algorithm (Banerjee &
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Pedersen 2002) is used in order to disambiguate. Lesk algorithm looks at the defini-
tion of the concept and the context window around the term in the text. It counts the
words that appear in both the context and the definition. Disambiguation is typically
performed by selecting the concept that has the highest count of words appearing in
both the context and the definition. However, this may be biased towards the concepts
with longer definitions. Therefore, we divide the number of matching words with the
number of tokens in the definition and disambiguate based on the value of this ratio.

Since we perform semantic tagging with already existing knowledge sources, that
have been evaluated on a number of applications, we use them as they are and do not
provide additional evaluation.

5.3 Conclusion and summary

In this chapter, we described a methodology for annotating tables by utilising prag-
matic table classification and semantic tagging. The purpose of table and cell level
annotations is to enrich data presented in a table with semantic knowledge from a
given semantic resource. The enriched information can be used for normalisation and
advanced semantic querying of tabular data. Querying may take into account relation-
ships between entities and terms in a semantic knowledge source. Pragmatic annota-
tions and semantic tags can contribute significantly to the performance of text mining
tasks, such as information extraction, information retrieval and question answering.
Such annotation can significantly contribute to the simplification of information ex-
traction rules (because of the semantic generalisation that can be exploited).

For pragmatic analysis, we have proposed a machine learning methodology that
uses table content as features. The content of caption and stub cells contributes most
to the effective pragmatic analysis. Caption describes a table, while stub cells enumer-
ate variables that are presented in the table, therefore these areas describe a table in
pragmatic terms. The performance of pragmatic classification was dependent on the
specificity of pragmatic classes: the more specific class - the better classifier.

Semantic tagging and pragmatic analysis are optional steps for annotation of ta-
bles and cells. In many cases, it is possible to perform text mining tasks, such as
information extraction, relying solely on lexical cues and rules. However, in other
cases, semantic tags and pragmatic classification of a table can significantly contribute
to performance and simplification of the rules. Rules can be simplified by exploiting
semantic relationships between the entities (e.g. using a high level entity, instead of
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naming all possible target entities and their lexical variations). Utilisation of semantic
tagging and pragmatic analysis depends on the data and performed task.

Table and cell annotation steps are domain dependent, as they use domain knowl-
edge and ontologies to tag data. Previous steps, grouped to table disentangling, are
usually domain and task independent. Table and cell annotations are still task indepen-
dent, since the same annotations can be used for multiple tasks, including information
extraction, knowledge discovery, information retrieval and question answering. In the
next chapter, we discuss task-dependent processing steps.



Chapter 6

A framework for information
extraction from tables

This Chapter describes a framework for information extraction from tables in the
biomedical literature. As stated in Chapter 2, multiple surveys indicated that meth-
ods developed for information extraction from text under-performed when applied to
tables. This is because the structure of a table, functional areas in the table and relation-
ships between cells play roles in understanding information in tables. Consequently, a
specific methodology for information extraction from tables is required.

In Chapter 3, we gave overview of 7 steps of the methodology for information
extraction from tables: (1) Table detection, (2) Functional analysis, (3) Structural anal-
ysis, (4) Pragmatic analysis, (5) Semantic tagging, (6) Cell selection and (7) Syntactic
analysis and information extraction. In this chapter, we explore the last two steps of
the methodology - cell selection and syntactic analysis with information extraction. At
the end, the methodology extracts information to populate the proposed template, that
was described in Section 3.3.4:

(VariableName,VariableSubCategory,ValueComponent,Context,Value,Unit)

Firstly, we explore two possible approaches for selecting the cells that contain a tar-
get variable - machine learning-based and rule-based. We evaluate these two method-
ology over a set of case studies for extraction of baseline characteristic variables, such
as number of patients, age, gender and adverse events. We experimented with nu-
merical (number of patients, age, gender distribution) and categorical (adverse event

110
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names) variables. At the end, we generalise findings from the provided exploratory
case studies into a framework for information extraction from tables.

The framework presented in this chapter is based on rules that take into account a
table’s structure, arrangement of functional areas, variable types and common syntactic
value presentation patterns. Table authors in our domain often use common patterns
and structures to present certain variables (e.g. statistical variables, numeric variables).
For example, if users want to present the mean value and standard deviation, there is a
set of commonly used patterns (e.g. 15±2, 15 (2)). Similarly, lexical cues are usually
from a closed set and presented only in certain functional areas of a table. Therefore,
we hypothesise that these patterns can be modelled and rules that take into account
these patterns can be reused or modified for other similar variables.

6.1 Cell selection and syntactic analysis

In the last part of the methodology, cells are analysed and information is extracted.
Information extraction has two sub-steps. In the first, relevant cells are selected by
analysing whether they contain the target variable. This analysis step can be performed
by using either heuristics or machine learning. The second step performs analysis over
the cell’s value, disentangles the components of the presented values, and extracts
them by filling the extraction template. The diagram of our methodology is presented
in Figure 6.1.

Figure 6.1: Workflow diagram of the information extraction steps
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1) Cell selection This step selects cells that contain values of the target variable by
analysing the content of the cells and the related navigational cells (cell’s context).
Two approaches for cell analysis are considered:

• A heuristic based approach selects only cells that contain a certain lexical cue
in their context. The content of the cell and related navigational cells are anal-
ysed. The method looks for lexical cues that suggest the existence of information
in the target cell (whitelist) or for the cues that will discard the cell because it
does not contain a target variable or information (blacklist). It can also analyse
whether the value presentation pattern matches the usual pattern for presenting
that kind of information by using regular expressions. The heuristics need to
be crafted manually based on the previously crafted information description and
improved by using insights gleaned from the data.

• Machine learning based approach. We modelled the problem as a classifica-
tion task: if the cell contains the target variable, classification returns a positive
class, and negative class otherwise. Features for each cell contain cell content,
the content of its header, stub and super-row number, cell role (e.g. header, stub,
super-row, data) and the position of the cell in the table grid. The content of the
cell and its navigational areas are stemmed using Porter stemmer (Porter 1980)
and then tokenized before the bag-of-word methodology is used.

2) Syntactic pattern analysis and value extraction By this step, the method knows
that the cell contains the target variable or its value. However, information can be pre-
sented in various formats. During this step, the content of a cell is analysed and the
value is searched based on a number of possible information presentation patterns. In
the case of numeric information, these patterns can be crafted using regular expres-
sions. These patterns may also have a logic of how to translate the presented informa-
tion to the extraction template. For example, if the presented value for patient age is
”18.3 (16-27)”, the logic should be able to conclude that number 18.3 is a mean value,
while 16-27 is a range in which the first value is the minimum and the second is the
maximum patient age. After the pattern analysis is performed, the value populates the
information extraction template.
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6.2 Case studies for cell selection approaches

6.2.1 Rule based cell selection and information extraction

As a case study, we implemented and evaluated a rule-based methodology for the fol-
lowing variables:

• Total number of patients

• Patient age statistics (mean, standard deviation and range)

• Gender distribution (number of male and female participants)

• Names of adverse events

The extraction of number of patients. We created rules based on 100 randomly
selected, baseline characteristic tables extracted from clinical trial publications in the
PMC training set. We first selected only tables presenting trials’ baseline characteris-
tics. In these tables, we checked the caption of each table for patterns starting with a
number followed by a lexical cue in its vicinity (e.g. patients, subjects, individuals,

participants, etc.). If a pattern was found, the number was extracted as the total num-
ber of trial participants. We also selected cells containing lexical clues and phrases in
their stub. The header usually represents an arm - or a treatment group, which maps to
context in our extraction template. The number in a cell is extracted as a candidate for
a number of participants in that group. The candidates are checked against a blacklist
of cues that determine that value is not the number of participants (p-value, %, mean,

median). If the header, stub, and cell content do not contain these words, the value is
extracted. We also selected header cells containing the letter ”n” and the number (e.g.
”n = 19”). The number next to the letter ”n” was extracted along with the content of
the cell without the expression that is regarded as the participant group name (context).
An example of extracted values and filled template from a baseline characteristic table
can be seen in Figure 6.2.

The evaluation (testing) set contained another 100 randomly selected baseline char-
acteristic tables from the clinical trial papers. The manual evaluation results for infor-
mation extraction of the number of the patients are presented in Table 6.1. As true pos-
itive, we considered values that were correctly extracted (with filled template). False
positives were values that were not presenting the correct value of the target variable
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Figure 6.2: Extracted number of patient variable and filled template from an example
table (PMC 1947993)

(in this case number of patients), but were extracted by the methodology. False nega-
tives were values that were present in a table, presenting the value of the target variable,
but not extracted by the methodology.

Precision Recall F-Score
Training 0.900 0.839 0.868
Testing 0.894 0.791 0.839

Table 6.1: Results of information extraction for number of patients

Our algorithm extracted 4,355 values from 6,558 documents. As some tables pre-
sented a number of patients per clinical trial arm or participant group, there were only
1,699 documents (26%) presenting the number of patients in tables.

The errors in extraction appeared because we did not compile an exhaustive lexi-
cal cue list. This caused both false positives and false negatives. Certain words were
missing in the blacklist (e.g. for the phrase ”number of patients excluded” - the word
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”excluded” in a given example), producing false positives. Also, non-standard abbre-
viations, that were not included in the whitelist, produced false negatives (Num. pa-

tients, No. patients, N patients, # patients, with possible changes in word order). Most
of the cues or abbreviations that we did not capture were not present in the training set,
while some were specific to a given paper.

Patients’ age extraction. A similar methodology was applied for the extraction of
patient age statistics. The algorithm selected candidate cells based on lexical cues in
stubs and super-rows. These candidates were then filtered with a lexical cue blacklist.
Once the right candidates were selected, we extracted variables against a set of regular
expression-based presentation patterns (mean ± standard deviation, min-max, mean

(min-max), etc.). Age may be presented in several units (years, months, weeks, days),
so we checked stub and header values for the appearance of cues. When some of
these units are mentioned in the navigational area, that unit is recorded in the template
unit field. Otherwise, ”year” is recorded as the default unit. An example of a filled
extraction template from from a baseline characteristic table can be seen in Figure 6.3.

We evaluated extraction of patient age (mean, standard deviation and range) using
the same training and testing dataset as for the extraction of the patient number. The
results can be seen in Table 6.2. During the evaluation, we considered a filled tem-
plate as true positive if the complete extraction template was filled correctly including
variable name, variable value, its value component, context and unit. We considered
an entry as false positive if an incorrect value was extracted or if parts of the template
were incorrectly populated. The entry was considered false negative if the value that
should have been extracted was not extracted.

Precision Recall F-Score
Training 0.927 0.792 0.854
Testing 0.936 0.838 0.884

Table 6.2: Results of information extraction for age of patients, including mean, stan-
dard deviation and range

Age was presented in 1,944 documents (30% of all documents). The method ex-
tracted 13,182 values for the patient age variable, 6,125 instances of mean age, 2,475
instances of standard deviation and 2,291 instances of the age range. Compared to the
total number of patients variable, age is more commonly present in tables.

We encountered a couple of tables that contained the age variable, which were
not recognized as baseline characteristic tables, by the pragmatic analysis component
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Figure 6.3: Example of a table and extracted values for the age variable (PMC
1906819)

of the methodology. One of the tables contained the cue ”age” in an unexpected
context (HT age – duration of hypertension). In two tables value presentation formats
were unexpected, so our algorithm was only able to extract the mean value and missed
standard deviations presented in these tables. Four tables presented age groups together
with a number of trial participants in each of the group (e.g. 18-25 – 10 patients, 25-35

– 15 patients, etc.). The algorithm misinterpreted these numbers as the participants’
mean ages. In three tables, the super-row or the second header of multi-table were not
recognized correctly which led to false negatives.

Matching patterns and extracting the right values, once the value is recognized, is
an important part of the process. We evaluated the performance of pattern extraction
for the extraction of patient age. The patient age statistics can be presented as the mean
value, its standard deviation and/or the range of ages. However, these three values can
be combined and presented using various syntactically different formats. During the
pattern matching evaluation, we examined the cells recognized as correctly containing
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the age of patients.
The patterns were matched and extracted with 0.994 precision, 0.9575 recall and

an F1-score of 0.975. In the testing set, we encountered one, new presentation pattern
and several patterns that did not appear in the training data that included some special
characters (central dot (·) instead of dot (.). e.g. 5 ·34). Overall, pattern matching was
reliable, accurate and reusable and if developed for certain types of presentations or
value groups (such as aggregated statistical data), it can be applied to other variables
that present information in the same manner.

Gender distribution extraction. In order to extract gender distribution, the method-
ology looked for gender related cues (gender, sex, male, female, m, f, etc.) in table
headers and stubs. The blacklist included cues such as p value or change. The syntac-
tic rules looked for the following patterns:

• Four values presenting the absolute number and percentage of male and female
participants (e.g. 34/24 (58%/42%))

• Two values presenting the number of male and female participants (e.g. 34/24,
34:24)

• Two values presenting a single category as absolute value and the correspondent
percent (e.g. 34 (58%))

• A single value presenting the value for one of the sub-category, either male or
female

We note that the order of the variable and separators may be different than in ex-
amples. However, we included multiple combinations in our rules.

The results of gender distribution extraction are featured in Table 6.3.

Precision Recall F-Score
Training 0.965 0.914 0.939
Testing 0.948 0.840 0.891

Table 6.3: Results of extraction for gender distribution of the patients variable using
rule based approach. Evaluation performed on the clinical trial dataset

The process for extracting the gender distribution of patients produced similar er-
rors to those described earlier, including presentation patterns missed, missing lexical
cues that either approved or discarded cells and errors accumulated from previous steps
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(e.g. disentangling, pragmatic classification, annotation). The lexical and syntactic
rules for extracting age and gender distribution variables are available in Appendix E.

Adverse event names extraction. As it is a categorical variable, we adopted a slightly
different approach for extracting adverse reaction names compared to previously ex-
amined, numerical variables. Categorical variables do not utilise presentation patterns
as numerical variables do. First, we selected tables that the pragmatic classification
step classified as containing adverse events. Second, we used UMLS semantic type
annotations of the content of the cells in order to recognize whether a certain column
contained adverse events. The methodology annotated the content of cells with se-
mantic types using MetaMap. We checked whether cells in a certain column contained
phrases annotated as ”Sign or Symptom” or ”Disease or Syndrome”. In cases where
multiple cells in the same columns contained these annotations, the content of all cells
in that column - except the header - were extracted as adverse event names.

We performed an evaluation of detecting names of adverse events over 35 docu-
ments in both the training and the testing set. We considered extraction as true positive
if it contained the correctly extracted name of adverse event from the table. In case the
extracted name was not an adverse event, it was considered a false positive. In case the
adverse event name is not extracted from the table, we considered it as false negative.
The results are presented in Table 6.4.

Precision Recall F-Score
Training 0.945 0.906 0.925
Testing 0.883 0.962 0.921

Table 6.4: Results of information extraction for adverse events

MetaMap annotated 7,701 instances of adverse events in cells, while 4,974 adverse
event instances, that were not annotated by MetaMap, were extracted by our method-
ology from 6,558 clinical articles with 12,787 tables.

The extraction of adverse event names performs better than the extraction of nu-
meric variables (the number of patient and age). The possible reason is that the seman-
tic resource (the UMLS concept tagger from MetaMap) helped with the rule creation
and generalisation. Errors appeared in columns that contained mixed content, among
which were also adverse events. Additionally, one table listed clinical conditions on
admission, with cell content annotated as ”Sign or Symptom” or ”Disease or Syn-
drome” semantic types, which were recognized by our approach as adverse events (see
example in Figure 6.4).
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Figure 6.4: Example of table presenting baseline characteristics as number of people
having certain conditions (PMC 2147028)

6.2.2 Machine learning based cell selection

Another approach to extracting information from tables uses machine learning in or-
der to detect cells containing a given variable. Similarly to a rule-based approach, the
information is then extracted using patterns. We implemented detection of cells con-
taining the number of patients; information about patient age and gender distribution.
Our aim was to explore to what extent a machine learning system can help extract
target variables compared to lexical cues.

We created a training dataset using 100 randomly selected baseline characteristic
tables from PMC. For the variable referring to number of patients, there were 147 pos-
itively labelled cells. The number of cells presenting age of the patients was 272, while
there were 204 cells presenting the gender variable. The dataset was highly imbalanced
since the whole dataset contained 13,610 cells. We performed three machine learning
experiments. In the first one, we balanced the dataset for each learning task, so it con-
tained the same number of negatively labelled cells as positively labelled ones (under
sampling). For this technique, we performed learning on under-sampled data. The sec-
ond approach consisted of learning from the unbalanced dataset. In the third approach,
we used cost-sensitive classification and experimentally adjusted the weights for the
best performance. As features, we used the content of the current cell and content of
the navigational cells referring to the current cell. The assumption was that machine
learning will be able to learn cues associated with target variables and therefore be able
to successfully select cells. In order to make it easier for machine learning algorithm
to learn presentation patterns of numeric variables, we changed numeric symbols to
the ”x” symbol.

We performed 10-fold cross-validation on this clinical trial dataset. In this case, we
evaluated only whether algorithm was able to select the right cell (no syntactic analysis
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and value/metadata extraction was performed). Therefore, if the cell is classified as
containing the value of interest for a given variable, it is considered a true positive. If
algorithm did not select the cell that should have been selected, it is considered a false
negative, while if algorithm selects wrong cell, it is considered a false positive. The
results are presented in Tables 6.5, 6.6 and 6.7.

Under-sampled (147 instances of each class) Whole unbalanced dataset Cost-sensitive classification

Algorithm Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

Naive Bayes 0.054 0.952 0.103 0.821 0.173 0.701 0.277 0.960 0.266 0.483 0.343 0.980

Bayesian Nets 0.101 0.912 0.182 0.911 0.292 0.517 0.373 0.981 0.512 0.422 0.463 0.989

C4.5 dec. trees 0.070 0.905 0.130 0.869 0.893 0.510 0.649 0.994 0.714 0.782 0.747 0.994

Random tree 0.066 0.585 0.119 0.906 0.580 0.544 0.561 0.991 0.573 0.585 0.579 0.991

Random Forests 0.214 0.932 0.348 0.962 0.935 0.490 0.643 0.994 0.797 0.667 0.726 0.995

SVM 0.085 0.918 0.155 0.892 0.850 0.463 0.599 0.993 0.754 0.626 0.684 0.994

Table 6.5: Results of selecting cells associated to the patient number variable using
various machine learning approaches

Under-sampled (272 instances of each class) Whole unbalanced dataset Cost-sensitive classification

Algorithm Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

Naive Bayes 0.089 0.930 0.162 0.879 0.205 0.819 0.327 0.957 0.254 0.754 0.381 0.969

Bayesian Nets 0.128 0.918 0.224 0.920 0.419 0.743 0.536 0.984 0.504 0.684 0.581 0.987

C4.5 dec. trees 0.092 0.795 0.165 0.899 0.886 0.591 0.709 0.994 0.783 0.801 0.792 0.995

Random tree 0.074 0.871 0.136 0.900 0.628 0.573 0.573 0.990 0.628 0.573 0.599 0.990

Random Forests 0.213 0.947 0.348 0.963 0.945 0.503 0.656 0.993 0.883 0.661 0.756 0.995

SVM with SMO 0.180 0.614 0.278 0.963 0.955 0.743 0.836 0.996 0.895 0.801 0.846 0.996

Table 6.6: Results of selecting cells associated with the age of patients variable (cu-
mulative statistical values such as mean, standard deviation and range) using various
machine learning approaches

Under-sampled (204 instances of each class) Whole unbalanced dataset Cost-sensitive classification

Algorithm Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy Precision Recall F-Score Accuracy

Naive Bayes 0.075 0.929 0.139 0.834 0.155 0.675 0.252 0.942 0.167 0.584 0.260 0.952

Bayesian Nets 0.099 0.934 0.179 0.876 0.475 0.584 0.524 0.985 0.813 0.528 0.640 0.991

C4.5 dec. trees 0.119 0.929 0.210 0.899 0.912 0.685 0.783 0.994 0.839 0.766 0.801 0.994

Random tree 0.081 0.959 0.150 0.843 0.739 0.746 0.742 0.992 0.739 0.746 0.742 0.992

Random Forests 0.155 0.990 0.218 0.922 0.953 0.624 0.755 0.994 0.893 0.807 0.848 0.996

SVM with SMO 0.122 0.909 0.909 0.897 0.903 0.756 0.823 0.995 0.833 0.812 0.823 0.995

Table 6.7: Results of the selecting cells associated with gender distribution variable
using various machine learning approaches
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Precision, recall, and F1-score presented in the tables are measured on positive
class. Since the data is unbalanced, the weighted average does not provide representa-
tive results.

The datasets contain a small number of positive class instances. Due to the small
number of positive instances, balancing data by under-sampling does not perform well.
Many machine learning algorithms rely on probabilistic distribution of classes and
assume same costs for misclassification of classes (He & Garcia 2009). However, if
the data represent the realistic distribution of classes, some of the algorithms are able
to cope with the data relatively well. The results for some algorithms (such as decision
trees, random forests and SVM) for learning from the whole dataset, are much better
than with under-sampled data. By using cost-sensitive classification and assigning
larger costs to positive rather than negative class, it is possible to improve these results.
By experimentally tuning costs, we managed to improve the F1-scores by almost 10%
(see Tables 6.5,6.6, 6.7).

When a machine learning approach was compared with a rule-based approach, it
was observed that a simple rule-based approach with a whitelist and blacklist of lexical
cues usually produced similar or better F1-scores. Development of a machine learning
model is more complex and time-consuming than crafting whitelists and blacklists as
typically, it is necessary to annotate several thousand cells and perform a number of
experiments to find the most suitable costs. Due to the imbalanced data, it was also
necessary to perform additional data processing (such as cost-sensitive classification).
Also, the machine learning approach performed similarly or worse than the rule-based
approach. Consequently, it appears more straightforward to develop a rule-based se-
lector for cells containing the variable of interest.

The proposed approach represents the state-of-the-art in table information extrac-
tion from XML documents, without any restriction on table structure. Even though
some of the previous approaches reported slightly better performance (Embley et al.
2005, Wang 2013), they were limited to standardized tables with pre-defined table
structures.
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6.3 General framework for information extraction from
tables

After performing and evaluating experiments, it is possible to generalise the findings
into the general framework for information extraction from tables in the biomedical do-
main. The framework defines the possible variable types, information required for task
specification (information extraction recipe) and the means to define lexical, semantic
and syntactic rules.

Components of the information extraction framework are mostly task and domain
dependant. However, some of the components of this framework can be developed for
one domain and transferred to the other domain. Variable types are domain indepen-
dent. Task specification recipe is, as well, domain-independent if viewed conceptually.
However, the majority of recipe components, its rules or values will be domain depen-
dant. Syntactic analysis and rules can be often transferred to other, especially related
domains. However, it is not possible to assume that same presentation patter will have
the same meaning in any domains (e.g. 15± 2 will be mean/median and standard
deviation in the biomedical domain, while in computer science it may be the mean
and standard error). Machine learning models, if they are trained using bag-of-words
model are domain specific. Trained model cannot be transferred to the other domain,
but training methodology is usually transferable.

6.3.1 Types of variables

Our model of table information contains five variable types whose extraction method-
ologies slightly differ. They are grouped into two high-level types: numerical and
textual variables. There are three numerical subtypes: (1) Single numerical value, (2)
Aggregated statistical value and (3) Categorized numeric values. There are two textual
subtypes: (4) Categorical and (5) Free text information classes. The diagram of the
identified information groups is presented in Figure 6.5.

Numeric variables

The numerical variable types contain these three groups/subtypes:

Group 1 – Single numeric. The first group represents the values represented as a
single numerical value (e.g. 15, 24.3). In demographic tables in the clinical trial
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Figure 6.5: Variable types, with their subtypes and the example variables for each
defined subtype.

literature, this may be the size of a cohort if we examine tables presenting aggregated
data about an entire cohort or age, BMI, weight or the height of a single patient if the
data is presented per participant. Individual measurement results are often presented
using a single numerical subtype.

Group 2 – Aggregated statistical values. Demographic data in tables are often pre-
sented cumulatively, for the whole cohort or for the groups participating in trial arms.
In such cases, values are usually presented as the mean value with optional standard
deviation or range (e.g. 15.3±2.1, 24(14−35), 16±2(14−17)). Examples of infor-
mation from this group are BMI, weight, height and/or age of patients in aggregated
demographic tables.

Group 3 – Categorized numeric values. Values in this group have multiple subcat-
egories and are presented as numbers, means, ranges or percentages per subcategory.
Examples of such values are ethnicity (e.g. number of White, Asian, Black, Hispanic,

etc.) or the number or percentage of patients with a certain stage of disease, adverse
reactions, etc. For this subtype it is necessary to define possible categories and the
mapping between the category names and cues identifying them in tables. Numerical
values categorized by two categories are a special case since they can be presented in
a single cell (e.g. 27/28). An example of such information is gender of participants
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in clinical trial. In some cases values are presented in multiple rows - typical for this
group - while in other cases binary categorized values are presented using special pre-
sentation pattern (i.e. explicit pattern, such as ”male/female - 22/14” or implicit, such
as ”female(%) - 14 (39%)”). Category cues are usually in navigational areas (headers
or stubs) but in some cases can be in data cells (e.g. 14 M, 18 F).

Textual variables

Textual information can be grouped into the two groups:

Group 4 – Categorical values. Categorical values are controlled words or short
phrases, such as names of diseases, adverse reactions, drugs, institutions, etc.

Group 5 – Free text. The last group presents free-text information. Examples of
such information are inclusion and exclusion criteria, the definition of terms or scales
and examples of questions asked in a questionnaire. They are longer phrases, sentences
or even paragraphs of texts stored in tables. Following extraction, they can be further
mined using standard text mining techniques. However, free-text variables are outside
the scope of this thesis.

6.3.2 Information extraction task specification
We introduce a description template that defines the information that needs to be
defined in order to successfully implement the information extraction from tables’
methodology. The template contains eight description categories that need to be de-
fined. The categories are presented Table 6.8.

For some of the description categories, it is useful to define a default value as tables
often present values without corresponding units. Unit is therefore one of the values
for which it is useful to define the default value. However, it is also necessary to define
a procedure for extracting and checking the unit. Another default value that needs to be
defined is the semantics of the values extracted during pattern analysis. It is necessary
to define the meaning of the values that are parts of the numerical expression. For
example, the value may present the mean or median with standard deviation using the
same pattern. We aim to identify whether the value is the mean or median by checking
the content of the stub cell in the same row. However, the majority of tables present
the mean without explicitly stating the word ”mean”. In this case, the default value
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Descriptor name Description Example

Variable identifier Name of the variable to be extracted. e.g. Age, BMI, Gender, Adverse event.
It can be mapped to an ontology e.g. mapping to baseline characteristics

in OCRe
Table’s pragmatic Pragmatic type of a table in which Pragmatic types can be for example
type information is likely to appear tables with Baseline Characteristics

Adverse events, etc.

Categories A list of possible categories e.g. for Grade: Grade I, Grade II, etc.
* Only for categorical Ethnic group: Asian, Black,
variables Caucasian, Hispanic, etc.
Cues

Lexical cues Set of lexical cues that determine Lexical cue for number of patients
whether the value is present in that or can be ”n=%d”, ”number
related cells of patients” in stub

and number in data cell, etc.

Functional cues Description of functional regions in the Number of patients may be in caption,
table where information may appear. header or data cell

Semantic cues Set of semantic cues such as semantic i.e. list of semantic types
types and higher level concept names indicates the presence of the value

(i.e. Sign or Symptom UMLS semantic
type may indicate adverse event in table)

Value type/pattern Description of the value type and its Whether the value is single number,
(Syntactic cue) pattern with the way to extract it range, percentage, etc.

Unit of measure Defines the default and possible e.g. default is gram (g), but kilogram (kg)
* Only for numeric unit of measure for numeric variables and milligram (mg) may appear
variables

Table 6.8: Categories of information that need to be described in order to specify a
table information extraction task

assumes the meaning of the value as ”mean value” (since it is used more frequently),
if not explicitly stated.

6.3.3 Defining rules for information extraction

Cell selection using lexical and semantic rules

Selecting cells in which a variable and its value are presented is done using a defined
set of lexical and semantic cues. The rule contains four parts: a list of cues for the
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whitelist, a list of keywords for the blacklist, functional areas where the cues should be
searched for (search functional areas), a functional area where the value of the variable
(information that should be extracted) is located (target functional areas). A functional
location of the cue (header, stub, super-row, target) is defined for both lists. In other
words, a definition is provided as to whether the cue should be searched for in the
header, stub or super-row or in the target cell. Also, it is defined whether the value
should be extracted from the header, stub, super-row related to the cell where the cue
is found or the data cell. In case a cue is searched in navigational areas (headers, stubs,
super-rows) and information should be extracted from the data cell, the information is
extracted from all data cells that are related to the matched navigational cell. Cues in
both whitelist and blacklist may be lexical or semantic.

Lexical cues are defined as a set of words in a whitelist and a blacklist. Table cells
are iterated and tested against the defined lexical rules. The presence of the cue from
the whitelist signals that the target cell potentially contains a value for the variable
of interest. The cell is then tested against cues from the blacklist. If the cell or its
navigational cells (as defined in a part of the rule defining where to look for these cues)
contain cues from the blacklist, the selection is discarded. Otherwise, information is
extracted from the selected or related cell, depending on the defined search and target
functional areas.

Semantic cues are defined similarly to lexical cues. However, instead of words
or phrases that are searched for, we use annotations. Annotations can be searched
for in headers, stubs, super-rows of the target cell or in the target cell itself. Again,
an annotations whitelist and blacklist is used. The method uses two layers of anno-
tations: annotation id and annotation description. In the case of UMLS annotations,
annotation ids were UMLS concept ids, while annotation descriptions were seman-
tic types. Therefore, it was possible to create whitelists and blacklists consisting of
UMLS concept ids and semantic types for the UMLS annotated data. This method it-
erates through table cells, selects cells using signals from whitelists and discards cells
containing cues from the blacklist. It is also possible to combine lexical and semantic
cues while creating cue lists (black or white).

In this step, the method also selects the unit and context for the numerical variables.
A set of possible units for the given variable has to be defined as well as the default
value. The method searches the cell and its navigational areas (header, stub, super-row)
for mention of the unit. If a unit is found, it is extracted and if not, the default unit is
used.
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In our method, the context is extracted as the concatenated value of navigational
cells relevant to the target cell that did not contain cues from the white list.

Syntactic rules and syntactic processing

The role of syntactic processing is to analyse the content of the selected cell with the
value, disentangle the value and identify its components (populating ValueComponent

from the extraction template). For example, the syntactic processing reveals whether
the extracted value is the mean, median, standard deviation, range, percentage, etc.

The value patterns are common for certain types of information. For example, age,
BMI, FEVl and many other variables present overall statistics for certain population
(average, mean, standard deviation, range). If the rules are developed for one variable,
they can be reused for others. In this way, it is possible to create a library of common
value presentation patterns. Examples of common numerical presentation patterns are
presented in Table 6.9.

Pattern Presentation examples Variables
Single value 65 Number of patients,

number of people with
certain adverse event, etc.

Floating point value 0.05 p-value
Aggregate statistical value 18±2 Age, FEV1, PEF, BMI

12-18 weight, height
12.1 (2.4) of patients in cohort
18±2 (15-20)

Alternatives 12/17 Gender distribution, blood pressure
Percentage 18 (55%) Gender distribution

55% Percentage of people with certain effect

Table 6.9: Examples of common syntactic patterns and variables that are often repre-
sented by them

Syntactic processing is performed using a rule-based methodology. The methodol-
ogy uses regular expressions for disentangling cell content. Syntactic rules map values
to their descriptions.

A definition of a syntactic rule contains three components: (1) the rule’s name, (2)
the rule’s regular expression and (3) a set of semantic assignments (descriptions) for
each component of the regular expression.

Value components (e.g. mean, standard deviation, range-min, range-max, etc.)
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can be assigned to each regular expression component. The aim of syntactic process-
ing is to assign semantics to each value component based on the value presentation
pattern and cues in the pattern and navigational cells related to the cell. Therefore, a
set of possible but distinct semantic assignments can be listed with the regular expres-
sion defining the rule and giving possible meanings to each extracted value. Often, a
value’s semantics can be induced from the value presentation pattern. For example, if
a table’s cell contains BMI values of 20-37, it is likely that the value is the range, with
a minimum value of 20 and maximum value of 37. However, for some value presenta-
tion patterns, additional information in the navigational part of the table is necessary.
One example is a pattern like ”16± 4”. The first value could be either the mean or
median. The navigational cells’ content for these data cells will determine through
mention, whether the value is mean or median. If the definition is not mentioned, a
default assignment of the value’s meaning can be used by applying the most common
one. In other cases, multiple values are presented with explicitly described semantics
of each value part in navigational areas. For example, if the gender value is presented
as 15:14, navigational cell’s would describe which value presents the number of male
participants and which one is the number of female participants. We allow for each
extracted regular expression group to define a set of keywords or synonyms with their
order of appearance that are looked for in navigational areas. The semantic assignment
contains a group number, ordered groups of keywords (or synonyms) and the semantic
assignment. Each keyword group is a comma-separated list of strings. A semantic as-
signment value is separated by the arrow symbol (–>). Figure 6.6 provides an example
of a rule in our descriptive language based on regular expressions, that can disentangle
a pattern such as ”15:14” for gender. According to the rule, in case any cue from the
list linked to the number of male participant variable (male, m, Male, M, men, males,

Males) appears before any cue linked to the number of female participants variable (fe-

male, f, fem, Fem, women, Women, females, Females), the first value is associated with
the number of male participant variable. In case a cue from the list linked to female
participants is appearing first, the first value is the number of female participants, while
the second value is the number of male participants. In case none of the cues appear, as
default, rule assigns the first value to the number of male participants, while the second
is assigned to the number of female participants. A more detailed description of rule
format is given in Appendix D.

Another example of the rule definition for statistical values (range, mean, median
and standard deviation) can be seen in Figure 6.7.
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Figure 6.6: Example of one syntactic rule with its semantics for extracting gender
distribution of the participants.

Figure 6.7: Example of one syntactic rule with its semantics for extracting statistical
values

In the case of the cell with the content ”12−18(16±4)”, the rule from Figure 6.7
would say that 12 is minimum value of a range, 18 is a maximum value, 16 is mean
or median (in case median is mentioned in stub or header of the cell) and number 4 is
standard deviation.

For categorical variables, syntactic analysis depends on the user’s definition of pos-
sible categories for that variable. Patterns can be defined as possible representations of
the given category (e.g. synonyms) that algorithm matches and extracts from the cells’
content.

For textual variables, syntactic analysis have to be complemented with further lex-
ical and semantic analysis in order to extract more granular information from the cell
content. However, this is outside the scope of this thesis.

6.4 TableInOut: a wizard for information extraction

In order to test the presented methodology, we developed software called TableInOut.
TableInOut is a tool in which user can specify table information extraction task, lex-
ical, semantic, syntactic rules and perform the extraction. Using the TableInOut and
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presented methodology we reproduced and in some cases were able to improve the
results for extracting age, gender distribution and adverse events presented in Section
6.2.1. The implementation details are presented in Appendix C. The tool was used in
COPD and asthma case studies presented in the following chapter.

6.5 Summary

In this chapter, we firstly explored two different methods for selecting cells that con-
tain the value of the target variable. One method is based on lexical and semantic rules,
while the other is based on machine learning. The evaluation showed that it is more
straight forward to use the rule-based methodology, as machine learning requires ad-
vanced methods in order to deal with unbalanced data and large amount of annotated
data.

We also presented a framework for information extraction from tables. The frame-
work contains a recipe for describing the table information extraction task, a variables
model and a step-by-step table processing method.

Information in tables can be categorized by two broad categories (textual and nu-
merical) or five narrower categories (single numerical, cumulative statistic values, cate-
gorized numerical, textual categorical and free text). As each of the variable categories
is different, the information extraction methodology may differ for each of them. We
defined information that anyone developing information extraction rules for certain
target variables in tables needs to know (a recipe for describing the table informa-
tion extraction task), such as binding to an ontology, functional, lexical, syntactic and
semantic cues, possible and default units of measure and pragmatic type. Once this
information is defined, one can easily craft rules and iteratively improve them.

The method aims to automate as many steps as possible. Table detection and func-
tional and structural analysis in the PMC dataset are generic and there is no need for
new rules in these processes. Semantic tagging can be performed by many tools, vo-
cabularies or ontologies. There are two layers for which users need to define rules
– lexical and syntactic. Lexical cues are specific to the target variable and need to
be separately crafted for each information class. The syntactic rules we propose in
our approach can be reused for extracting multiple variables. Simply, syntactic pat-
terns are defined per type of value presentation. Multiple variables can use the same
presentation patterns (e.g. age, FEVl and BMI are represented using statistical pat-
terns representing mean, median, standard deviation and ranges). The methodology of
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defining and parsing these rules is generic, so it can be applied to a wide range of data
formats and tables.

The framework provides an easy-to-use methodology for non-expert users who do
not necessarily need programming skills to develop extraction rules. The framework
also makes it easier to develop extraction methods for variables. Our framework pro-
vides the complete table information extraction pipeline, with special consideration for
the biomedical domain. The method can be extended to other domains by using differ-
ent models for classifying tables or different vocabularies for annotations however, the
base methodology remains the same for all domains.



Chapter 7

Case studies

7.1 Extracting clinical trial baseline characteristics from
Asthma and COPD studies

7.1.1 Introduction

Asthma and chronic obstructive pulmonary disease are two obstructive airway disor-
ders that represent major global causes of death and disability (Welte & Groneberg
2006).

Chronic obstructive pulmonary disease (COPD) represents a group of lung dis-
eases characterized by poor, long-term airflow. It includes diseases such as emphy-
sema (damaged air sacs in the lungs) and chronic bronchitis (long-term inflammation
of the airways). COPD can cause difficulties for everyday activities, such as moving
and walking. In 2015, more than 174 million people (2.4% of global population) suf-
fered from COPD (Vos et al. 2016). COPD was the cause of death for more than 3.1
million people in 2015 and in comparison to 2005, more people suffered and died from
COPD (Wang et al. 2016). COPD is predicted to become the third most common cause
of death by 2020 (Welte & Groneberg 2006).

On the other hand, asthma is a disease characterized by chronic airway inflamma-
tion with increased airway responsiveness. The symptoms of asthma include wheez-
ing, coughing, dyspnoea and airway obstruction over short time periods. Asthma was
known in the times of Hippocrates (460-370BC). It is estimated that 130 million peo-
ple worldwide suffer from asthma. It has been also estimated that about 7% of the
UK adult population have asthma (Bourke & Burns 2015) and the number of people
suffering from asthma increased by 9.5% from 2005 to 2016 (Vos et al. 2016). More

132
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than 400,000 people worldwide die annually from asthma (Wang et al. 2016). Factors
that cause asthma can be genetic, but also environmental (Bourke & Burns 2015).

Both asthma and COPD are diagnosed using lung function tests, most commonly
those using spirometry. In both diseases, forced expiratory volume in one second
(FEV1), peak expiratory flow (PEF) and FEV1/vital capacity (VC) are reduced (Bourke
& Burns 2015). These tests, in combination with patient activity, are indicators for di-
agnosing COPD and asthma.

Figure 7.1: Example of the baseline characteristic table from asthma clinical trial pre-
senting FEVl, PEP and Asthma Quality of Life Questionnaire (AQLQ) variables (PMC
2228375)

Therefore, the results of lung function test are baseline characteristics that show
the severity of the disease in COPD and asthma related clinical trial studies. Since
both diseases are chronic, often drug and treatment development focus on improving
quality of life for affected subjects. Many studies are measuring and comparing quality
of life in subjects of different clinical arms. Usually, well adopted quality of life tests
are used, such as the asthma quality of life questionnaire (AQLQ), and the asthma
control questionnaire (ACQ) for asthma and the St. George Respiratory Questionnaire
(SGRQ) for COPD. An example of a table presenting FEV1, PEF and AQLQ variables
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is presented in Figure 7.1.
In our case study we extract the following variables:

1. Forced expiratory volume in one second (FEV1)

2. Peak expiratory flow (PEF)

3. Asthma quality of life questionnaire (AQLQ)

4. Asthma control questionnaire (ACQ)

5. Saint George respiratory questionnaire (SGRQ)

6. Age of participants

7. Gender distribution of trial participants

The first two variables (FEVl and PEF) are lung function tests. The questionnaire
variables (AQLQ, ACQ, SGRQ) are produced from quality of life questionnaires. Gen-
der distribution and age of participants are general baseline characteristics. All vari-
ables in this case study are usually presented as statistical values for the whole popula-
tion or for a clinical trial arm population. In some cases, results are presented for each
participant.

The aim was to extract the variables, their values and metadata to the extraction
template (VariableName, SubCategory, ValueComponent, Context, Value, Unit).

7.1.2 Methodology

The workflow diagram of the methodology used in this case study can be seen in Figure
7.2.

Data collection

Our collaborators from AstraZeneca provided a set of 148 articles related to COPD and
asthma (25 related to asthma and 123 related to COPD). Curators manually extracted
information about baseline characteristics from these documents. However, only 28
articles were available as open access. In the newest PMC subset1 (January 2017),
available for download and processing, containing more than 700 thousands articles,
only 12 articles (10 about COPD and 2 about asthma) matched articles provided by

1https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
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AstraZeneca. The remaining 16 articles were obtained manually, by downloading them
from the PMC website.

Figure 7.2: Workflow of the methodology used for extracting variables from clinical
trial documents about asthma and COPD

The data obtained from AstraZeneca was used as test data. For training data, we
used 30 articles about COPD and asthma, selected by searching the PMC public subset
from January 2014.

Table detection

Since the documents are in PMC format, table detection is looking for the relevant
XML tags.

Functional and structural processing

The obtained documents were processed using the table disentangling methodology
described in Chapter 4. This methodology infers the functional areas of the table and
relationships between cells.

Pragmatic analysis

Pragmatic processing applies a model that takes into account a table’s caption, footer
and navigational areas. We previously developed such a model that contains four
classes: baseline characteristics, adverse events, inclusion/exclusion criteria and other
(for details see Section 5.1). For this case study, the task was to extract baseline char-
acteristics. A previously developed model was used in order to retrieve relevant tables.
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Semantic tagging

Semantic tagging was not used in this case study, since we were able to identify lexical
cues for selecting the cells presenting target variables.

Information extraction rules (lexical and syntactic processing)

For crafting information extraction rules and performing information extraction, we
used methodologies described in details in Chapter 6.

While performing case studies as described in Chapter 6, we developed the extrac-
tion rules for age and gender distribution of trial participants. For other variables, we
initially applied an intuitive approach for listing cues that we intuitively thought would
indicate the presence of a certain variable. The rules were evaluated on a set of 30 doc-
uments (different from the selected test documents for case study). During the initial
evaluation on that dataset, errors were analysed and rules improved iteratively. During
the iterative improvement process, we improved our F1-score for extracting the FEV1
variable by almost 10% (from 0.817 to 0.901). The performance of other variables also
slightly improved.

The lexical cues for locating relevant variables in tables are presented in Table 7.1.
The cues are searched in navigational areas of tables, while data is extracted from data
cells.

Variable Lexical white list Lexical black list
Age Age, age p-value, p value, p*,

P, HT
Gender Gender, Male, Female, M, F, P-value, P, p*

Sex, M:F, M/F, Boys, Girls, Men, Women
FEV1 FEV1, FEV-1, change, VC, reversibility,

Forced expiratory volume classification, Mild,
Moderate, Severe, p-value

PEF PEF, Peak flow change, reversibility,
p-value, mild, moderate,

severe, change, increase
decrease

AQLQ AQLQ, AQLQ(S), p-value, p value, p*, P
Asthma quality of life questionnaire

ACQ ACQ, Asthma control questionnaire p-value, p value, p*, P
SGRQ SGRQ, St. George respiratory questionnaire p-value, p value, p*, P

Table 7.1: Examples of lexical cues for extracting given variables
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All variables in this case study (Age, FEV1, PEF, AQLQ, ACQ, SGRQ), except
gender distribution, are presented as cumulative statistical values for the whole popu-
lation. Usually they are represented as the mean, standard deviation and range. The
same syntactic rules for age presented in Chapter 6 were applied for all the six classes.
Gender distribution is different, usually presenting as two categories (number of male
and number of female participants, often with percentages). In this case study, we also
applied the rules developed for extracting gender distribution presented in Chapter 6.

7.1.3 Evaluation and results

We performed a quantitative analysis of the performance of our approach and calcu-
lated precision, recall and F1-score for each variable. Since we had access to the data
extracted by the curators, we also compared manually curated data with the data ob-
tained using our methodology.

The test set contained 22 articles on asthma and COPD (6 articles out of 28 did not
have content. These articles contained reference to the images of the scanned pages)
that were quantitatively evaluated for true positives (TP), false positives (FP), false
negatives (FN), precision, recall and F1-score. Extracted information was considered
true positive if the variable, value component name, value and unit matched. In case
any of these were misinterpreted, the instance was considered either false positive (if
the metadata or value, that was not supposed to be extracted, was extracted) or false
negative (if the metadata or the value, that was supposed to be extracted, was missing).
The results per information class are presented in Table 7.2.

Variable TP FP FN Precision Recall F1-score
Age 134 14 38 0.905 0.779 0.837
Gender 147 0 0 1.000 1.000 1.000
FEV1 208 13 25 0.941 0.893 0.916
PEF 10 0 0 1.000 1.000 1.000
ACQ 18 0 0 1.000 1.000 1.000
AQLQ 18 0 0 1.000 1.000 1.000
SGRQ 16 1 0 0.941 1.000 0.969
Overall 551 28 63 0.951 0.897 0.924

Table 7.2: Evaluation of the target variables extracted from Asthma and COPD clinical
trials. (TP - true positives, FP - false positives, FN - false negatives)

Extraction of certain variables was perfect (Gender, PEF, ACQ, AQLQ). This is
mainly due to the small size of the data set. However, PEF and asthma questionnaires
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(ACQ and AQLQ) use quite small and standard set of cues for presenting these vari-
ables, which contributed to the good performance. FEV1 and SGRQ also performed
well. Age produced lower scores, however they were comparable with results obtained
during our previous evaluation (see Section 6.2.1).

The majority of errors were due to complex table structure including indistinguish-
able super-rows (see an example in Figure 7.3), or multiple rows presented in one
XML table cell (content was aligned visually but visual structure was not supported
with the structure of XML). The SGRQ extraction picked a p-value, since a p-value
keyword for this variable was not on the blacklist. Interestingly, gender distribution
in this dataset performed well, while in our previous experiments it performed with a
0.89 F1-score.

Figure 7.3: Example of the table in which row containing ”Age” was not recognised
as super-row and therefore age ranges (in a row bellow) were not extracted (PMC
3528484)

We also manually evaluated expert-curated data and compared it with data obtained
via our method. Human curators extracted more variables and were generally more
accurate. However, we did find some mistakes in the curated data (e.g. a misplaced
decimal point). Also, one article in the curated data had a reference to the wrong
PMCid.

On the other hand, our method referenced all navigational areas with the extracted
information, so there was no information loss. The curator was able to define vari-
ables, e.g. as pre-treatment or post-treatment FEVl, while our method extracted it as
FEVl values, together with stub information that indicated the time of measurement.
A manually curated database for gender distribution was standardized, just to present
the percentage of female participants. Our method extracted values that were reported,
however, with some additional computing, it was usually possible to induce the number
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and percentage of both male and female participants.

7.1.4 Conclusion

This case study presented a real task of information extraction of baseline character-
istics from clinical trial publications about COPD and asthma. The case study was
performed in collaboration with AstraZeneca and reflects real industrial need for table
information extraction.

Information extraction rules can be efficiently developed by reusing the methodol-
ogy for similar variables, developing keyword lists that indicate presence (or absence)
of the variable and iteratively improving the rules. In some cases, intuition about how
the variable can be presented was enough to develop efficient rules. Some rules took
less than ten minutes to develop to the presented performance level: rules for extracting
new variables can be efficiently and rapidly developed.

The performance of the algorithm is promising. With an overall F1-score of 0.924,
the method facilitates accuracy and speed of data curation from tables in scientific
articles. A degree of quality checking and human involvement is still necessary in order
to achieve necessary data quality for quality-sensitive disciplines such as medicine,
health care and biology. However, these results are promising, especially considering
expert curation is imperfect and significantly more expensive to undertake.

Our approach has its limitations. It cannot handle tables that are not in XML for-
mat. In this case study, 6 out of 28 documents (21%) were not processed due to this
issue. However, publishers are increasing the number of publications available in XML
format thus reducing the scale of this problem for our approach.

7.2 Extracting drug-drug interactions from structured
product labels

7.2.1 Introduction

Many people are taking multiple drugs. Over 20% of adults are administered with five
or more drugs (Guthrie et al. 2015). When multiple drugs are administered, it is pos-
sible that one of the drugs may increase or decrease the effect of the other drug. Drug-
drug interactions are a key challenge in drug administration and drug development.
During drug development, it is important to identify interactions with other chemical
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compounds. However, thousands of people are harmed each year by exposure to two
or more drugs for which a known potential interaction exists (Magro et al. 2012). In
1994, it was estimated that approximately 700,000 patients in the United States suf-
fered from some kind of adverse drug reaction, while approximately 100,000 died as a
consequence of drug adverse reactions or drug-drug interactions (Lazarou et al. 1998).
Drug-drug interactions account for more than 30% of all adverse drug reactions (Iyer
et al. 2014). The chance an individual may suffer from adverse drug-drug interaction
increases exponentially as a new drug is added to his/her regime (Percha et al. 2012).
This is especially harmful to the 29.4% of elderly people, who are prescribed with 6 or
more drugs simultaneously (Bushardt et al. 2008). Harm to people can be prevented if
practitioners know of potential interactions and effects of prescribed drugs. Unfortu-
nately, there is currently no single, complete, structured source of information for these
”potential drug-drug interactions” (PDDIs) (Ayvaz et al. 2015). In the United States,
one important information source is drug product labelling, which is required by law
to contain information regarding clinically significant interactions (US Food and Drug
Administration 2014).

All drug product labels in the United States are freely available through the Na-
tional Library of Medicine’s DailyMed website2 in a standard format called Structured
Product Label (SPL). While easy to access, a major limitation of SPLs is that infor-
mation regarding PDDIs is provided as unstructured text and tables in diverse formats.
Providing a solution to computationally extract PDDI information from the label into
an indexed knowledge base would enable a more convenient access to this information.
Moreover, extracted PDDI information could be more easily linked to other sources of
information and provide a complete picture of the mechanisms, risk factors, clinical
implications, and management options of each PDDI.

Structured Product Labels (SPL) is a document markup standard (a variant of
XML) approved by Health Level Seven (HL7) and adopted by the United States’ FDA
as a mechanism for exchanging product and facility information3. SPL documents an-
notate certain information, such as drug name, ingredient substances or manufacturer.
However, they also contain a number of sections with text, figures and tables. Section
names and topics are prescribed by the FDA and annotated with Logical Observation
Identifiers Names and Codes (LOINC).

2https://dailymed.nlm.nih.gov/dailymed/index.cfm
3https://www.fda.gov/forindustry/datastandards/structuredproductlabeling/

default.htm
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Information about PDDI with their effects is stored in tables under the ”Drug inter-
action” section of SPLs. Tables are a convenient format for storing such information
because of their flexibility for storing multi-dimensional data in a dense space. How-
ever, there is no standard table format and authors can structure tables and their cells
in any way they feel appropriate. Using spanning cells, multiple headers and the em-
phasis of the cell content, it is possible to specify the semantics of the table and how
the table should be read.

Within the drug informatics domain, the SPLICER system (Duke et al. 2013) was
successfully applied to extract adverse drug events from tables and text written in the
Adverse Reactions section of SPLs. Other efforts focus on side effects and drug indi-
cations (Fung et al. 2013, Khare et al. 2014, Boyce et al. n.d.). The SIDER (Side Effect
Resource) database uses named entity recognition to extract side effects and indications
from product labeling, including SPLs (Kuhn et al. 2015). More recently, starting with
full-text papers from the Journal of Oncology, Xu & Wang (2015b) extracted drug side
effect relationships, which they compare to the SIDER database. They used Support
Vector Machines to classify tables in the literature as side-effect-related or not and then
used a dictionary-based approach to extract drugs and side effects based on manually
curated lexicons. In 2017, the US National Institute of Technology and Standards orga-
nized a shared task in which the goal is to extract adverse drug reactions and a number
of related entities (drug classes, severity, factors, negations, animals, etc.) from SPLs4.
We participated in this shared task (Belousov et al. 2017).

In this case study, we report on a hybrid method, combining machine learning and
heuristic rules for automatic extraction of PDDI information from tables found within
the ”Drug Interactions” section of SPLs. With minor modifications due to the nature
of extracting entity relations instead of entities, the method relies on the methodology
described in Chapters 4, 5 and 6.

7.2.2 Methodology

The methodology contain six steps (see Figure 7.4): (1) table detection, (2) functional
analysis, (3) structural analysis, (4) pragmatic analysis, (5) table annotation and (6)
information extraction (in this case study, we only selected cells presenting drug-drug
interactions, therefore syntactic analysis was not used). Since drug product labels in

4https://bionlp.nlm.nih.gov/tac2017adversereactions/
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the DailyMed database are in an XML format, table detection is trivial. Also, ta-
bles containing potential drug-drug interactions are only in the section describing drug
interactions. This section is labelled with LOINC (Logical Observation Identifiers
Names and Codes) code 34073-7 and therefore pragmatic analysis is also trivial.

Figure 7.4: Workflow diagram

Table Detection and Extraction

The first step is to enable computational access to data provided in the individual cells
of each table. In order to detect tables and extract their content we used TableDisen-
tangler (methodology described in Chapter 4), with a new reader that reads the specific
XML structure for SPL documents.
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We downloaded structured product labels for all 30,409 prescription drug prod-
ucts as of January 1, 2016, from DailyMed. The full set of SPLs was reduced to a
subset of SPLs identified as having at least one table in the Drug Interaction section
(section coded with LOINC 34073-7). The data contained 16,211 tables from 1,161
SPL documents. However, only 1,530 tables contained information about drug-drug
interactions (they were presented in the drug-interaction section). These SPLs were
used as input into TableDisentangler, which parsed and analysed the table content and
assigned functional roles and structural relationships to individual cells and annotated
the contents of each cell.

Functional and Structural Analysis

Functional analysis determines each cell’s functions within each table. Cells are iden-
tified as table header, row header, super-row or data cell.

The TableDisentangler methodology is primarily based on emphasis features (see
Section 4.2.2). However, the DailyMed dataset does not follow the same emphasis
rules, especially for headers. Headers are not divided by horizontal lines and are of-
ten not marked with thead tags. Approximately 46% of tables presenting drug-drug
interactions (565 tables) did not have labelled headers. The caption can be also pre-
sented inside thead tags, while the actual table header is below, in the body of the table.
We queried cell content for cues that indicate caption (word ”Table” followed by the
number) and found 136 tables containing caption in one of the cells, often labelled as
header (see example in Figure 7.5).

We evaluated the performance of the original TableDisentangler header detection
algorithm on 20 tables (see Section 4.3.2). The precision was 0.61, while the recall was
0.65. Headers are important for extracting drug-drug interactions since header labels
can be used efficiently to craft extraction rules. The evaluation showed that headers
have to be treated differently for the DailyMed dataset by taking lexical and semantic
cues into account.

Since DailyMed drug labels are different document types from PMC articles, some
parts of the methodology, such as header detection, have to be adjusted or changed. We
developed a hybrid methodology consisting of a machine learning model and heuristics
(see workflow diagram in Figure 7.6). As only the header detection in DailyMed doc-
uments is performing with low scores, we used the methodology described in Chapter
4 for classifying stubs and super-rows. Firstly, we TableDisentangler with the standard
functional analysis methodology is executed. Secondly, we applied a machine learning
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Figure 7.5: Example of a table in which both caption and footer are inside the table
cells (DailyMed setID: 524c025b-809b-440f-a756-e3518d7c92db)

Figure 7.6: Workflow of the modified methodology for functional and structural anal-
ysis of DailyMed documents.
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algorithm to classify header cells based on their content. In order to train the algorithm
we randomly selected 1,000 headers labelled by TableDisentangler from drug-drug in-
teraction tables. For training, we randomly selected 823 labels, 329 headers and 494
non-headers. Thirdly, we used heuristics to post-process functional annotations. We
assume that all cells of a certain row have to be either in the header row or outside it.
Therefore, if the majority of the cells in some row are classified as headers, then all
the other cells in that rows are also annotated as part of the header. If a minority of the
cells in the row is classified as headers, their annotations are fixed to data cells. Based
on experimental experience, we also assume that headers can only be in the top three
rows of the table. We noticed manually that there are not many multi-tables among
DailyMed drug-drug interaction tables, so it was safe to make this assumption. Rela-
tionships between cells rely on functional analysis and so we have not modified our
original methodology for structural analysis.

Annotation of Cell Content

We annotated cell content using the Unified Medical Language System’s (UMLS) and
MetaMap program to identify named entities within the table cells (Bodenreider 2004,
Aronson 2001). The annotation method stored the MetaMap annotations as Concept
Unique Identifiers (CUIs) linked to data from specific table cells. The UMLS Semantic
Network provides a semantic type for each CUI, such as Pharmacologic Substance,
Clinical Attribute or Therapeutic or Preventative Procedure. These annotations can be
further linked to information from UMLS through CUI, such as ATC (The Anatomical
Therapeutic Chemical). Using the ATC codes, we can determine on which organ or

Figure 7.7: ATC coding system
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system a drug’s active ingredient is acting and whether the cell is describing a single
drug or drug group. Drug codes contain seven characters, while drug codes for drug
groups or systems on which a drug is acting contain fewer characters. An example
of the coding can be seen in Figure 7.7. It is important for users of the drug-drug
interaction database to know whether the drug is interacting with the whole drug group
or just a single drug ingredient.

Extraction of Drug-drug interactions

Once the tables were annotated, we proceeded with crafting rules for extracting drug-
drug interaction. We extracted the drug that the drug label described. This was per-
formed without looking at the table as the document contained XML tag that name the
drug SPL refers to. As previously discussed, we only looked for tables presented in the
section labelled with LOINC 34073-7. In this case study, we are extracting drugs that
interact with the drug the label is about. Therefore, we are dealing with a categorical
variable (there is a closed set of possible drugs). The lexical white list for headers con-
tained words ”drug”, ”coadministered” or ”co-administered”. The header cell should
not contain cues like ”effect”, ”dose”, ”exposure” or ”recommendation” (the lexical
blacklist). We selected the column defined by the mentioned keywords. Our method
extracts cells below the header in the given column unless the column is spanning, is a
super-row or the cell is empty.

Extracted cells are saved in the template that stores information about the SPL ID,
table id from which the information is extracted, the drug that the SPL is about, the
content of the interacting drug(s) cell. Further, the extracted information can be syn-
tactically and semantically analysed in order to obtain one-on-one drug interactions.
Often, tables present multiple drugs in one data cell. Authors group cells by drug
groups and present multiple drugs from the same group in one cell (see example in
Figure 7.8). Our extraction methodology extracts the content of the cell as one inter-
action entry (as it is in the table). However, in case one wants to obtain the pair of
drugs that are interacting, further analysis is necessary. UMLS and ATC annotations
provide valuable help in obtaining pairs and recognizing drug groups and individual
drugs. However, not all drugs and/or drug groups can be annotated. Therefore, the
content must be appropriately split. The content that mixes drug/ingredient names
with text (for example about dosage) can be challenging to parse and find the interact-
ing drug. The task involves drug named entity recognition and is beyond the scope of
this project.
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Figure 7.8: Example of a table presenting multiple interacting drugs per cell (SetID:
b9df447c-b65b-45b9-873a-07a2ab6e2d1f)

7.2.3 Evaluation

Descriptive Analysis of Table Content

Out of 30,409 prescription drug SPLs, only 1,161 SPLs (3.9%) had tables present in the
Drug Interaction section. The selected SPLs contained on average 12.6 tables, while
on average 1.24 tables presented potential drug-drug interactions. These 1,161 SPLs
included a total of 1,530 tables about drug-drug interactions. Tables in the drug-drug
interaction section had 55 cells on average. In this case study, we focused only on
tables in the drug-drug interaction section and did not analyze tables in other sections.

Functional and structural analyses

We evaluated the performance of the original TableDisentangler methodology for func-
tional analysis. We randomly selected 20 tables for evaluation and inspected them
manually. Cells were considered true positives if their function was correctly anno-
tated. If the correct function was not annotated it was counted as false negative, while
if the cell was annotated with incorrect functional annotation, it was considered false
positive. The results are presented in Table 7.3.

The performance of header detection, as well as super-rows, significantly dropped
in the DailyMed dataset, compared to the PMC dataset for which the methodology
was initially developed. For the current case study, it was important to improve header
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TP FP FN Precission Recall F-Score
Cell role – header 61 39 32 0.6100 0.6559 0.6321
Cell role – stub 309 0 0 1.0000 1.0000 1.0000
Cell role – super-row 49 6 45 0.8909 0.5213 0.6578
Cell role – data 675 18 104 0.9740 0.8664 0.9171
Overall (micro average) 1,094 63 181 0.9455 0.8580 0.9014

Table 7.3: Functional analysis evaluation of the original TableDisentangler methodol-
ogy on the DailyMed subset

detection since it was indicating the column that contained drug-drug interactions. We
created a dataset from 823 instances: 329 with true header content, 494 with the con-
tent of non-header cells. A final year pharmacology student performed annotation. We
applied a set of machine learning algorithms on the content of these 823 cells. The
10-fold cross-validation results are presented in Table 7.4.

Algorithm Precision Recall F-score
Naive Bayes 0.588 0.936 0.722
Bayesian Networks 0.559 0.964 0.708
SVM with SMO 0.985 0.821 0.896
C4.5 decision tree 0.944 0.307 0.463
Random forests 0.973 0.875 0.922

Table 7.4: Machine learning header detection using various algorithms and 10-fold
cross validation on the created dataset

The algorithm that performed best was the random forest with 97.3% precision
and 87.5% recall. We used this model and described post-processing heuristics for the
header being in the first 3 rows of the table and the whole row had to be a header on all
tables. In this evaluation, cross-validation was performed on cell level. Therefore, cells
from the same table appeared in both training and testing sets and the algorithm was
able to learn some header terminology. In order to perform a test on a new dataset, we
randomly selected 50 tables for training and 50 tables for testing that were manually
inspected whether the headers are classified and annotated correctly. The results are
presented in Table 7.5.

Dataset TP FP FN Precision Recall F-score
Training data 288 8 41 0.973 0.875 0.922
Testing data 176 59 26 0.749 0.871 0.805

Table 7.5: Machine learning header detection evaluation for the DailyMed subset
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As our training data contained only 823 instances, the algorithm did not manage
to learn all the possible table header cues. The training data also contained similar
entries, while tables selected for testing contained more diverse cues. In short, our
training data was not large enough to learn possible cues and achieve performance
closer to the training data. However, the results are significantly better than without
using machine learning.

Drug-drug information extraction

We used 50 randomly selected tables for rule development and an additional 50 tables
for evaluation. The evaluation results are presented in Table 7.6. Our extraction tem-
plate contained drugs, which the drug label described, interacting drugs and metadata
about tables and articles from which data was extracted. If interacting fields contained
multiple drugs or drug classes, we assumed correct extraction (true positive). If the
algorithm extracted a cell that did not contain interacting drugs or drug classes, we
counted it as false positive. If a cell containing interacting drugs or drug classes is
missed by the algorithm, it is counted as a false negative.

Dataset TP FP FN Precision Recall F-score
Training data 514 16 128 0.970 0.819 0.888
Testing data 428 45 122 0.904 0.778 0.836

Table 7.6: Evaluation of potential drug-drug interaction pairs from tables in DailyMed.

With an F1-score of 0.877 for the training data and 0.836 for the test data, the
results are satisfactory for a drug-drug information extraction task.

However, these scores can be improved with further iterations. In both cases, pre-
cision is high and there are not too many false positives. The false positives occurred
by collecting rows that described drugs in cells below (usually super-row, see exam-
ple in Table 7.9) or by selecting the wrong column because of cues missing from the
blacklist. The false negatives were more prevalent. A proportion of false negatives
were caused by TableDisentangler ignoring cell content after empty HTML charac-
ters. Having fixed this issue, the F1-score for training data grew to 0.925, while the
F1-score for testing data was 0.904. Other false negatives were mainly caused by
changes to table structure in which a new header was presented in a row that overrode
the initial header (e.g. see Figure 7.10). For example, the table may present drugs in
the first column, while the effect of the interaction is in the second column. However,
in the middle of the table a new header presents drugs that increase the effect of some
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substance in the first row and drugs that decrease the effect of the same substance in
the second column. This is often changed back to the initial table structure by adding
a super-row that groups drugs by target organ or disease (see example in Figure 7.10).
This way of presenting information is used infrequently.

Figure 7.9: Example of a drug-drug interaction table with super-rows. Often super-
rows were not correctly recognised and their content extracted as an interacting drug
(SetID: f02310a3-92ea-9ec4-f218-38ddb8eb0334)

The presented approach for extracting drug-drug interactions extracts cells present-
ing drugs related to the main drug that the drug label is about. However, in order to
obtain drug-drug interaction pairs, more work has to be done on splitting the content
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Figure 7.10: Example of a drug-drug interaction table that changes overrides the way
of data presentation defined in the header in rows 5 and 6 (SetID: f02310a3-92ea-9ec4-
f218-38ddb8eb0334)

of the cell and identifying drugs and drug groups. The only attempt made by this ap-
proach was identifying drug groups using ATC codes. However, many reported drugs
and chemicals are not part of UMLS or ATC. Therefore, we leave identifying individ-
ual drugs and drug groups from the identified cell for the future work.
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7.2.4 Conclusion

To the best of our knowledge, no other project has attempted to extract PDDI informa-
tion from tables in SPLs. We found that TableDisentangler could load and conduct a
functional and structural analysis of all Drug Interaction section tables. Once tables are
disentangled and the headers recognized, the extraction rules based on whitelists and
blacklists can successfully extract cells containing drugs and substances that interact
with the SPL target drug SPL (with a 0.904 F1-score).

The results suggest that it is feasible to construct scalable rules for extracting PDDI
information from tables found in the Drug Interactions section of SPLs. Extracted po-
tential drug-drug interactions provide important information about drug administration
that can be used in clinical decision support systems. The method presented here al-
lows population and updating of database that can be used for clinical decision support.
The extracted information is indexable and searchable and therefore, can prevent ma-
licious administration of drug combinations in medical decision support systems.

Extracting drug-drug interactions requires relation extraction, where one part is in
a table (interacting drug), whilst the other may not be there (the drug the SPL refers
to). In this case, it is necessary to expand the methodology to incorporate integration
between text and table information extraction. However, the proposed methodology is
still useful and followed. The original information extraction approach is limited to ex-
tracting information presented only in tables however, information presented in tables
will often have context presented elsewhere in the article, as with drug-drug interac-
tions. The approach to deal with such relationships has to include a post-processing
relation resolving step.

7.3 Summary

In this chapter, we presented two information extraction case studies. Both case studies
present real world problems faced by biomedical domain researchers. The first case
study was designed in collaboration with AstraZeneca and its biomedical informatics
and text analytics teams. The second case study was designed in collaboration with the
University of Pittsburgh and its Biomedical Informatics department.

The first case study presented how clinical trial baseline information can be ex-
tracted using the methodology we have developed in this thesis. This case study
showed promising performance and ease-of-use for information curation from tables
in biomedical literature.



7.3. SUMMARY 153

The second case study presented extraction of drug-drug interactions from tables. It
was done using the described steps and the recipe we proposed. However, the second
part of the information extraction methodology required an extension for resolving
relationships with entities that were not presented in the table.

The presented case studies showed power, accuracy, ease-of-use and limitations to
the methodology we developed. However, we have presented how it is possible to use
the same methodology, to overcome some of the limitations.



Chapter 8

Discussion

This chapter explores our research questions, discusses challenges, generalizability
and some limitations of this work.

In this thesis, we designed, developed and used an integrated methodology for in-
formation extraction from tables in the biomedical domain that contains the following
steps:

1. Table detection (Chapter 3)

2. Functional analysis of tables (Chapter 4)

3. Structural analysis of tables (Chapter 4)

4. Pragmatic analysis of tables (Chapter 5)

5. Semantic tagging (Chapter 5)

6. Cell selection (Chapter 6)

7. Syntactic processing of cell content and extraction of information (Chapter 6)

In Chapter 3 we gave an overview of how the methodology overall works. Initial
case studies that helped methodology development are presented in Chapters 5 and 6.
In Chapter 7, we presented several case studies in information extraction that validate
our methodology.

8.1 Research questions

In Chapter 1, we presented a set of research questions. In this chapter, we will discuss
each of them.

154
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What levels of processing are needed to disentangle a table’s internal
structure from its visual representation?

Compared to text, data in tables is organized using visual structures. These visual
structures allow tables to present multi-dimensional information in a dense space. Cells
in tables are visually related and, based on these relationships, it can be determined
which navigational cell is describing a particular data cell. Therefore, compared to free
text data that runs linearly (i.e. one-dimensional), tables contain additional complexity
in their visual structure. In order to mine the content of a table, its visual structure
needs to be disentangled and computationally modelled.

Once a table is detected, two layers of processing are necessary to disentangle
the table’s visual representation — functional analysis and structural analysis. As de-
scribed in Chapter 4, the role of functional analysis is to recognize the functions of the
cells in the table. In other words, during the functional analysis, cells are classified as
part of the header, stub, super-row or data area of the table. This can be achieved using
a set of heuristic rules or machine learning. Different document sources (document
databases) may have different styles of tables and sometimes it is necessary to modify
the functional analysis methodology to be able to efficiently detect functional areas
(see drug-drug interaction extraction case studies in Chapter 7). Structural analysis
uses the results of the functional analysis to link cells in the table that are functionally
related. In other words, structural analysis finds navigational cells for each cell in the
table. If the cell functions are known, this can be done using a set of heuristic rules
about the functional areas and structure of the table. These two levels of processing
disentangle the tables visual representation and serve as a basis for further table mining
processing layers (pragmatic, lexical, syntactic, semantic).

What levels of processing are necessary for extracting information
from tables?

As discussed above, two layers of processing — functional and structural analysis –
are necessary in order to disentangle a table’s visual representation. The table’s cell
content can be textual, numerical, symbolic or mixed. Therefore, different layers of
processing need to be applied, with specific modifications for table data. The textual
processing layers that need to be applied to extract table data include:

• Pragmatic analysis – analyses what is the function of the table in the document.
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It answers the question of what kind of data is presented in the table or what is
the table’s purpose in the document.

• Semantic tagging – maps the table content to the relevant concepts in a knowl-
edge resource. Semantic tagging can be achieved by using semantic knowledge
sources or databases and semantic taggers.

• Cell selection – Selects the cell containing value of the target variable. In the
proposed methodology, a rule-based approach was used. The approach utilises
matching of semantic concepts, semantic types or lexical cues in order to select
the relevant cells.

• Syntactic analysis – analyses the presentation patterns of a given cell. Often
in table processing, syntactic analysis is performed in combination with lexi-
cal and semantic analysis of the content, in order to extract the right piece of
information from the cell. Syntactic analysis depends on the variable type. If
the variable is numerical, it analyses the presentation patterns of the values in
the table and assigns meanings to the pattern components. Presentation patterns
are often shared in different tables and variables. Some of the patterns are estab-
lished in certain fields, such as presenting statistical information (mean, standard
deviation, ranges, etc.). Therefore, a library of patterns can be reused for the ex-
traction of different variables. On the other hand, if the variable is categorical,
the algorithm searches for a possible category in the cell content and extracts it.
If the variable is textual, further syntactic, lexical and semantic analysis has to
be performed over the text in order to extract more granular information, but this
was outside the scope of this thesis

What information and knowledge about data is necessary in order
to design and implement information extraction from tables?

Designing and implementing information extraction from tables requires knowledge
about variables targeted for extraction, such as background information, lexical and
semantic cues and syntactic presentation patterns that are commonly used for that
variable. During the design phase, it is necessary to define what type of variable is
supposed to be extracted (numerical, categorical, textual). In the case of numerical
information, it is necessary to define the possible and default units of measure.
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Lexical or semantic cues, as well as syntactic patterns, may be in any functional
area and so the designer of the information extraction process has to define where the
cue should be searched for and the location of the variable for extraction. Cues and
information of interest for extraction do not have to be in the same functional areas.
Lexical or semantic cues are commonly located in the navigational area of the table
(header, super-row or stub), while the variable values are located in data cells. Syntac-
tic analysis is usually performed on the content of the cell where information of interest
is located, but it may also take into account syntactic patterns of the relevant naviga-
tional areas (for example, matching values from the pattern with their descriptions in
navigational cells). Another specific feature in designing table information extraction
can be the use of pragmatics. It is relatively rare to use pragmatics for information
extraction from text. However, pragmatics can significantly reduce the search space
for information of interest in tables. It classifies tables by the information presented
and therefore an information extraction system can only analyse tables that contain
relevant groups of information.

What levels of table processing would benefit from rule-based ap-
proaches rather than machine-learning, given the typical short text
available in tables?

For each layer of table processing, we analysed whether it benefited from machine
learning or rule-based approaches. For each step, we proposed the approach that is the
most appropriate for that step.

Functional analysis. Both machine learning and rule-based approaches for func-
tional table analysis are detailed in the literature (Yildiz et al. 2005, Fang et al. 2011,
Ng et al. 1999, Son et al. 2008, Liu 2009). However, prior work did not analyse in
which case a rule-based approach is more appropriate than machine learning-based
and vice versa. Our study analysed tables in XML formats in two document databases:
PMC and DailyMed. The documents in these databases differ significantly in table
structure, emphasis features (e.g. position and alignment of cells, their content, lines,
text emphasis, etc.) and markup. These differences provided insights on the benefits
and shortcomings of each approach. In datasets where emphasis features can be clearly
identified and used to distinguish navigational and data areas, a rule-based approach
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performs well (as presented in Table 4.6 in Chapter 4, the F1-score of rule-based func-
tional analysis in the PMC dataset was over 0.94). When tables do not use clear em-
phasis features in their markup to distinguish navigational and data areas of the table,
it is necessary to rely on other features, such as lexical cues and semantics. In such
databases, functional analysis can benefit from machine learning or hybrid approaches
(a mix of machine learning and heuristic rules) for specific functional areas (typically
in a given domain). However, machine learning is domain dependent and requires ad-
justing and retraining to be applied to the domains for which the algorithm was not
trained.

Structural analysis. Structural analysis depends on the results of functional analy-
sis. Once headers, stubs, super-rows and data cells are recognized, the set of rules is
able to disentangle relationships between the cells. Therefore, in structural analysis,
machine learning was not needed as a set of heuristics based on the composition of
functional areas was able to recognize inter-cell relationships.

Pragmatic analysis. A machine learning approach was primarily chosen in this re-
search for pragmatic analysis. Once table disentangling was performed using func-
tional and structural analysis, features for machine learning pragmatic analysis were
obtained in a relatively consistent manner (content of navigational areas, captions, foot-
ers, referring sentences). Our experiments suggest that a dataset for training a machine
learning classifier can be made manually, by labelling around 100 tables for each prag-
matic table type. The more specific the pragmatic types, the more accurate the classifier
was. In some rare document data stores, it may be possible to craft rules for pragmatic
classification based on the position of the table (e.g. in DailyMed).

Semantic tagging. Semantic tagging has a role to enrich and normalise the content
of the table, by linking it to the concepts in some semantic knowledge source. Semantic
tagging is usually performed using a semantic knowledge source or semantic taggers.
Some semantic taggers may apply machine learning approaches (Reeve & Han 2005),
while the majority of semantic taggers that we applied use rule-based matching to the
knowledge source (Aronson 2001, Miles et al. 2005, Miller 1995).

Cell selection. Cell selection has a role to select target cells that contain the variable
or its value. Selecting cells for information extraction can be performed using rules or
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machine learning. The process of creating the training dataset for selecting cells for
information extraction is a time-consuming process. Also, the created dataset is likely
to be highly imbalanced, therefore techniques like cost-sensitive learning have to be
applied in order to achieve satisfactory results (e.g. above 0.70 F1-score, see Section
6.2.2). Similar and even better results can be achieved using rule-based approaches and
iterative improvement of rules (as demonstrated Chapter 6). The content of the cells
in the table is usually short text, often abbreviated, therefore any grammatical features
would not be helpful, so a bag of words approach and lexical cue matching approaches
provide good results (0.80-0.94 F-scores).

Syntactic analysis. Syntactic analysis is the final step in analysing patterns of value
presentation in cells and extracting information of interest. On one hand, values are
often presented in a finite set of patterns so it is possible to craft syntactic analysis rules
and point to the information to be extracted. On the other hand, it seems more labour
intensive to model this as a machine learning task. Syntactic analysis can be modelled
as a sequence labelling task, in which cell values are parsed and their meaning recog-
nized (e.g. mean, standard deviation, range minimum, range maximum, percentage,

number of male participants, etc.). In order to apply this method and train the model it
is necessary to have a substantial dataset with a number of examples for each data pre-
sentation pattern. Also, semantics of the value are often determined by the pattern in
the navigational area (e.g. content ”male/female” in stub explains the meaning of the
value ”19/22” in the data cell). It is challenging to construct a machine learning ap-
proach that is able to analyse and link value descriptions with values in different table
areas. Because of these challenges, our methodology used a rule-based approach.

How can table information extraction benefit from domain speci-
ficity? Which steps of the methodology are domain dependent and
which ones are domain independent?

The task of information extraction is usually seen as domain dependent. Information
extraction requires domain knowledge in order to find the variable of interest and to
narrow the search scope for the given variable. However, some steps of the method-
ology may not be domain dependent or may be domain independent in certain special
cases.
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Our methodology for information extraction from tables has seven steps. Table de-

tection is almost in all approaches that can be found in literature domain independent.
Since our method is identifying tables based on a particular XML tag, it is domain
independent. Functional analysis can be domain independent in case tables are em-
phasizing functional areas such as header. However, not all authors and datasets use
emphasis for functional areas. In the case when there is no emphasis, machine learning
can help identify functional areas. However, machine learning based approach makes
functional analysis domain dependent. Structural analysis is based on the output of
functional analysis. Once the functional analysis is performed, the structural analysis
uses a set of rules to connect related cells. Therefore, structural analysis is domain
independent. Domain dependence of the pragmatic analysis depends on the structure
of the dataset. Some of the datasets contain a particular tag or marker, that indicates
the purpose of the table. This tag or marker may not be related to a single table, but
in some cases to the whole section and all the tables in the given section would have
the same pragmatics. This is a case in DailyMed database. However, some databases
or document types do not contain this. For example, in PMC database, tables with
different pragmatics or purpose may be in a single section. For these cases, machine
learning and the domain specificity can help identify the pragmatics of tables. Se-

mantic tagging is always domain dependent, since it usually uses a domain-specific
semantic resource. Cell selection is also domain dependent, since the cell selection
rules contain cues that are representative of the domain-specific variable that should
be extracted. Syntactic analysis is domain dependent, since different domains may
present variables differently, or values may have a different meaning (e.g. a part of the
value that has a meaning of a standard deviation in the biomedical domain may have
a meaning of a standard error in mathematics or computer science). However, certain
domains share value presentation patterns, therefore they can be reused or transferred
to the other domain.

How can the data represented in tables be interpreted (i.e. linked to
meaning as represented by information extraction slots)?

In this research, we extracted data from tables into structured templates that contained
variable identifiers that could be linked to a semantic resource, identifiers of the docu-
ment and table from which information was extracted and information that additionally
described the extracted values and its context (e.g. a clinical arm and unit of measure).



8.1. RESEARCH QUESTIONS 161

The data in the suggested template format is stored in the structured database. How-
ever, it can be easily converted to another format, such as linked data and linked with
ontologies and other semantic resources for further value interpretation.

Can surrounding text that refers to a table help interpret the table’s
data?

Tables are regularly referred to by the surrounding text. In the text, authors highlight
and often discuss data in the table. However, the discussion is usually only about a part
of the table (e.g. the most significant value from the table). In Chapter 5, we evaluated
how much the surrounding text that refers to a table helps in the pragmatic analysis of
the table (i.e. describing what information is grouped and presented in the table). When
referring text was used for pragmatic classification, the method produced a 0.62 F1-
score. When a caption was used to determine the pragmatic type, the method produced
a 0.93 F1-score. Similarly, content from other table areas, such as stubs, were more
informative about table pragmatics than a referring sentence. Therefore, experiments
suggest that sentences referring to the table do not contribute much to understanding
and interpretation of table data. For some tables, the referring sentence or text may
indicate the most important values in the table for a particular research article topic.

What levels of accuracy would facilitate efficient data curation on a
large-scale to support information extraction from clinical trials?

Efficient data curation has two dimensions: speed of curation and accuracy of the
automatic curation process.

In terms of curation speed, research by Alex et al. (2008) and Donaldson et al.
(2003) claimed that natural language processing-assisted curation from text can speed
up the process by 20-70%, depending on the complexity of the task. Similar levels
of acceleration can be achieved considering table data. Tables are rich with factual
information that is important for reproduction and further research. Automation is
required as manual extraction of the table data is a labour intensive and slow process.
The main goal of assisted curation is to point a curator to extracted data, where the
curator needs to check or improve the data quality.

When considering the level of accuracy that would facilitate efficient data curation
on a large-scale, it is desirable to consider human curators’ accuracy levels. Human
curator accuracy levels can be estimated via inter-annotator agreements for annotating
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entities in text and tables. The process of determining the inter-annotator agreement
consists of multiple annotators annotating a document and calculating the consistency
of their annotations (Brants 2000). Unfortunately, to the best of our knowledge, there
is no research that calculates inter-annotator agreement for information extraction in
tables. Inter-annotator agreement for annotating protein-related named entities in text
produced a 0.849 F1-score while protein-protein interaction produced a 0.6477 F1-
score (Haddow & Matthews 2007, Alex et al. 2008). Alternatively, inter-annotator
agreement was high for data such as patient date of birth - Cohen’s kappa of almost
100% - while cancer staging measures, the number of metastases and other complex in-
formation was much lower in terms of inter-annotator agreement (Warner et al. 2013).
According to the literature, demographic information has high inter-annotator agree-
ment (e.g. age has agreement of 99-99.7%, race has agreement of 97-99.5%, height
94-98.5%, weight 95.7-98.5%) (Shiloach et al. 2010).

Currently, natural language processing cannot match the performance of human
annotators in text or tables. For extracting information about the age of patients, the
presented methodology in this work performed with an F1-score of 0.884. A number of
patient variables were extracted from the test set with a 0.839 F1-score, adverse events
for drugs with a 0.921 F1-score and age distribution a 0.891 F1-score. In the baseline
characteristic extraction case study, there were several variables with an F1-score of 1
(ACQ, AQLQ, PEF, SGRQ, Gender). This may be due to a small testing dataset be-
cause some of these information classes have a relatively small and standardized form
of presentation. The presented results are the state-of-the-art in table information ex-
traction. The scores are lower than human scores however, the difference is lower than
10% - in many cases lower than 5% - so the results suggest that assisted information
extraction using table mining is likely to boost the speed and performance of creating
curation databases, therefore significantly reducing their cost. With training on larger
data sets and crafting more specific rules precision and recall can be improved.

8.1.1 Hypothesis

Since the proposed methodology for information extraction produced reasonable re-
sults, we confirmed our suggested hypothesis: that a multi-layered approach to mining
information from tables can facilitate large-scale, semi-automated extraction and cu-
ration of data stored in tables in a specific biomedical domain. Multi-layer analysis of
tables is required because of tables’ structural, linguistic and semantic complexity. The
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methodology was applied on a large scale in our case studies and we extracted demo-
graphic and adverse events information from clinical trials and drug-drug interactions
from drug labels.

8.2 Challenges

The work presented in this thesis addresses several challenges in table mining, mainly
related to table disentangling and information extraction processes:

• The use of XML tags and attributes. Table disentangling relies on how the
table XML is read. However, XML used for presenting tables and emphasizing
cells or areas in the table can be different for different publishers. Even the same
publisher, who manages multiple-document databases, may use different XML
tags and attributes for presenting tables in these databases. The U.S. National Li-
brary of Medicine maintains both PubMed Central (PMC) – a database of open
access articles in biomedicine, and DailyMed – a database of structured prod-
uct labels of approved drugs in the United States. Although both databases use
XML for document representation, the use of attributes and XML features dif-
fers significantly. In PMC, the header is marked with thead tags in the majority
of cases and where it is not, either a horizontal line is present or spanning cells
are grouped in upper layers of the header. Thus, straightforward and accurate
heuristics can be developed for detecting the header area. The same heuristics
do not work with DailyMed data because thead and horizontal lines are not used
to mark headers, and often captions are misplaced in cells marked with the thead

tag. Instead of the mentioned features, some cells are distinguished using the
class attribute and the visual emphasis is achieved by using the combination of
class attributes and cascading style sheets (CSS). Spanning cells are often rep-
resented as multiple cells, where only one is non-empty. While in PMC this is
usually the first one, in DailyMed it is often the central one. Because of the stated
differences, it is hard to generalize methodology based on emphasis features.

Although it is possible to provide general heuristics about table structure and
emphasis, which we did in Chapter 4, an XML reader that utilizes specific at-
tributes and features of that particular data has to be developed for each dataset.
We tried to overcome the issue in Chapter 4 and 7 by using machine learning
in combination with heuristics. However, in that case the methodology becomes
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domain dependent. Publishers can assist this process by standardizing the set of
XML features they use and by using features appropriately such as thead tags
or spanning cells. However, before publishers standardize the use of XML fea-
tures they use to publish tables, generalizing the approach and developing tools
to the wider set of XML-based data sets remains a challenge that requires further
development.

• Semantics of table data. Table cell content contains text that is often ungram-
matical, abbreviated and short. In the cases of short and abbreviated text, simple
cue matching techniques perform well. However, semantic analysis relies on
functional analysis and disentangled inter-cell relationships. It is often not pos-
sible to find the meaning of a certain data cell without knowing which header,
stub or super-row cells describe the given cell. Semantic knowledge sources can
facilitate understanding of table data and information extraction. If knowledge
sources are not available, synonyms, abbreviations and acronyms for the concept
that should be extracted have to be specified as rules. Missed terms can reduce
the extraction process performance.

• Syntactic analysis and value presentation patterns. In this thesis, we have
presented an approach to analyse and assign values to various value presentation
patterns in table cells using regular expressions and a set of value component
assignment rules. The assignment rules search for keywords in navigational ar-
eas that facilitate assignment of semantic value. Different variables may use the
same value presentation patterns, therefore the rules are reusable, since value
types, such as statistical values and single numerical values, can be analysed
with the same patterns. Still, with the degree of freedom authors have in terms
of value presentation, capturing variable values can be challenging. Sometimes,
multiple values are presented in a single data cell, while the description of each
value is presented in a navigational cell. Linking values and their descriptions in
other table areas can also be challenging.

8.3 Generalizability

Although designed primarily for the biomedical domain, the information extraction
methodology and all analysis layers presented in this thesis were designed with gener-
alization in mind.
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While we aimed to provide a generalizable framework for table information extrac-
tion from documents in XML formats, we only partially managed to generalize certain
steps. As previously mentioned, reading XML documents and performing functional
analysis depends on XML tags and attributes used in a given dataset. However, we
have provided a set of heuristics based on emphasis and table structure. These heuris-
tics are applicable to most of the data sets. However, reading of the XML and tags and
attributes with which structure is described in a given dataset has to be implemented
for specific datasets. Our heuristics include:

• For recognizing headers:

– Headers are often emphasized in bold, with a different colour or font com-
pared to the rest of the table

– Headers are often separated by horizontal lines.

– Headers are usually on top of the table. Multiple layered tables can be
recognized by spanning cells that group concepts below it, until the first
row that contains no horizontally spanning cells.

– Header’s content is often of different syntactic type (e.g. text) compared to
data cells bellow it (e.g. numerical).

• For recognizing stubs:

– A stub is usually the left-most column of the table.

– In cases where the most left column contains vertically spanning cells, the
stub contains multiple columns until the first column without vertically
spanning cells.

• For recognizing super-rows:

– Super-row cells often span cells across the whole row (this may also be
presented as a row of cells, with a non-empty cell only in the beginning or
in the middle).

– Cells bellow super-row in the stub contain indentation

Our experiments suggest that with these heuristics, it is possible to distinguish
functional areas in most datasets. In case some of the heuristics are not present in
the given dataset, our methodology can be adjusted, for example by using a machine
learning or hybrid method.
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Semantic tagging that we performed using UMLS is specific to the biomedical
domain, but specific tagging tools can be used for other domains.

Pragmatic analysis is performed using a machine learning method, relying on the
content of captions, headers, stubs and super-rows. It is a domain dependent task as it
uses the content of the cells and caption as features. However, a pragmatic classifier
can be trained for other domains and tasks.

The TableInOut method was developed for crafting lexical, semantic and syntactic
rules and is domain independent. It relies on functional and pragmatic analysis output
as well as semantic tagging. It is based on term and pattern matching so it is domain
independent. We successfully applied it to the biomedical domain, obtaining F1-scores
of 0.82-0.94 for information extraction, depending on the complexity of the task, tables
and quality of semantic annotations. With some domain- and dataset specific modifi-
cations, the methodology can be applied to other domains.

8.4 Data curation and querying

Data output from our systems (both TableDisentangler and TableInOut) is stored in a
relational database. The data could also be in other formats, most notably in the form
of linked data stored in a triple store. Linked data is a convenient format for linking
data from our data store to other knowledge bases and data stores.

Since a linked data format is able to represent any relational data, the data from
the relational database can be in the future transformed to linked data (Konstantinou &
Spanos 2015).

We have identified places in our methodology where curators can check and im-
prove the quality of data, as well as places where data can be useful for users. The first
point, where curators can check the data is after the functional analysis. Detected func-
tional areas are the main feature for structural analysis. Also, information extraction
depends on correctly recognized functional areas. We propose a curation interface, in
which curator can see the original table and the table in which functional areas are
labelled (or coloured). The curator can check and change labelling for each cell, based
on which further steps of table processing are performed (see Figure Figure 8.1).

Table data can be queried after the structural analysis. After this step, document,
table and cell level information retrieval can be performed. The table data output from
structural analysis stored in the form of relational database can be used or this data
can be additionally indexed using information extraction techniques, potentially giving
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Figure 8.1: Curation interface for checking and improving quality of data after the
functional analysis. On the left is original table, while on the right is the same table
with functional annotations (colours). The interface was implemented as an indepen-
dent project (Su 2016).

different weights for different table elements. The following types of queries can be
performed over the data:

• Retrieve documents that contain a certain keyword in table.

• Retrieve documents that contain in certain functional area (e.g. header, stub,
super-row, data cell) given keyword or concept annotation.

• Retrieve tables that contain certain keyword.

• Retrieve tables whose referring sentence, caption or footer contain given key-
word.

• Retrieve tables from document which title, abstract or text contain given key-
word.

• Retrieve tables that contain given keyword in a given functional area (e.g. only
header, header or stub, etc.).

• Retrieve cells that contain given keyword.

• Retrieve cells that contain given keyword in related cells (e.g. retrieve content
of the cells whose header contain ”placebo”).
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• Retrieve cells that contain given annotation in themselves or in related cells (e.g.
retrieve cells that have annotation for BMI concept in stub, retrieve cells that are
annotated as ”symptom or disease”).

As evidenced, the queries can be quite specific and provide useful information
from tables. We have developed a demonstration web application that demonstrates
querying over structurally analysed table data (see Figure 8.2). The web application
is available at http://gnteam.cs.manchester.ac.uk/demos/table_explorer/.
The web interface was partially developed as an independent project at the University
of Manchester (Tang 2016).

Figure 8.2: The interface for querying structurally analysed table data (Tang 2016)

The final point in our methodology where curators can check and improve data
quality is after the final step of information extraction. The curation interface should
show extracted data in templates and original tables from which the data was extracted.
Also, as this is the final step of the presented table information extraction methodology,
data can be used for querying and development of medical decision support, knowledge
management or question answering systems.

8.5 Table and cell annotation

Annotation of the documents, including their components, such as tables, is a data cu-
ration task. The existence of table annotation schemata and annotated corpora, would
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facilitate the development of methodologies for table information extraction. Cur-
rently, most annotation formats focus on annotating textual documents. A range of
both in-line and stand-off annotation formats for annotating text has been developed
over time. However, the majority of these formats and annotation tools do not support
annotation of XML documents and tables. While some may be used to annotate text
in XML, they do not store the structure, which is crucial for table annotation. Lack of
annotation tools and formats slows table mining research and makes it more difficult to
perform research using techniques that traditionally rely on annotations (such as ma-
chine learning training). During the second Biomedical Linked Annotation Hackathon
(BLAH2, 2015 in Mishima, Japan), we proposed a modification of PubAnnotations
(Kim & Wang 2012), based on XPath that can be successfully utilized to annotate
XML documents and tables located in these documents1. The idea was expounded
further during the Biomedical Linked Annotation Hackathon in Munich, Germany the
following year, when we began development of an annotation tool based on the pro-
posed scheme.

Figure 8.3: Format of the proposed annotation schema

The basic idea of the annotation schema was inherited from the PubAnnotation

1https://docs.google.com/document/d/1aZoT3yMZjN8bv952F1jpHWgMCOxYrtkE57fy219sNvY/
edit?usp=sharing
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schema, in which it is possible to annotate denotations or concepts, relations and mod-
ifications. Denotations or concepts are simple mentions of something an annotator
wants to annotate. The relation is the relationship between two concepts. Modifications
modify the concept (negation, hypothetical, etc.). While standard PubAnnotations are
designed for annotating text and store the span of the annotated text in its annotation
format, the proposed annotation format uses XPath instead of the span. With the use of
the XPath, it is possible to point at any part of the XML structure. However, between
XML tags there may be multiple words, out of which only a few annotators may want
to annotate. This is possible to achieve using the XPath substring function. Using the
substring function, we can point to the span inside the content of the selected XML
tag. An example of the proposed annotation schema with annotated denotations and
relations can be seen in the Figure 8.3. We also developed a proof-of-concept RichAn-
notator tool, that is able to make denotation (concept) annotations23. The current state
of the RichAnnotator tool can be seen in Figures 8.4 and 8.5.

Figure 8.4: RichAnnotator tool index page, showing sample XML document with an-
notated concepts

Visualization is still at the XML level although it would provide a better user expe-
rience if XML was interpreted. Also, the current version of the tool does not support
relations and modifications. However, since table annotation was not the focus of this
project and we used other means of training machine learning algorithms using table
data, the final development of XML and table annotation tool remains a future task.

2https://gist.github.com/nikolamilosevic86/c94382d4b52705e9ae75dab0eda6381e,
3https://github.com/nikolamilosevic86/RichAnnotator
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Figure 8.5: RichAnnotator tool - annotation screen automatically finds XPath of se-
lected item. Annotator has only to fill the concept details.

Interestingly, PAULA XML (Potsdam Exchange Format for Linguistic Annota-
tions) followed a similar path, utilizing XPointers for selecting annotated XML tag
(Zeldes et al. 2013). However, PAULA XML is an annotation format. Annotations
from different annotation tools can be converted to PAULA XML annotation format.
However, there is no specific annotation tool that would help annotate structured docu-
ments. In late February 2017, W3C released a Web annotation data model recommen-
dation4 that uses XPath for selecting annotated data in the document. Hypothes.is is
an open source tool that follows W3C recommendations for the data model. The tool
is in form of a Chrome add-on and server side application that stores the annotations.
Hypothes.is runs its instance of the server side tool, from which annotations are acces-
sible through an API 5. There is a space for the development of new tools, especially
those that allow annotation of other XML formats (specialized formats such as PMC
or DailyMed).

4https://www.w3.org/TR/annotation-model/
5https://web.hypothes.is/
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8.6 Limitations

The work in this thesis was undertaken for analysing tables in an XML format. A
significant amount of scientific literature is still made available in other formats, such
as PDF (e.g. arXiv.org, certain journals and conference proceedings on IEEE Xplore,
SpringerLink, etc.). Databases, such as PMC and DailyMed are growing and convert-
ing more papers into XML formats, however, a large amount of scientific literature is
still not available in the XML format. While some concepts given in this thesis can
probably be applied to the PDF format, certain steps of the methodology, designed and
developed in this thesis, are not suitable for PDF or any other non-XML format.

Functional analysis is currently developed for the PMC and DailyMed XML for-
mats. Although both in XML, they had differences in tags and attributes used for
emphasizing functional areas. Extending functional analysis for other data sets may
require implementation of heuristics or training machine learning models. Develop-
ing a generic approach to functional analysis that would not be domain or dataset
dependent requires further research. Also, some work is required on improving the
performance of the functional analysis. It is important to provide the best performing
approach in the early stages of table analysis, such as functional analysis, because the
errors from this stage may propagate in the higher analysis layers and negatively affect
their performance.

Pragmatic classification using machine learning performs well for narrow, specific
table classes. As pragmatic classes and information grouped in pragmatic classes
widen, the performance is likely to be weaker. In our methodology, the designer of
the task specifies the number and nature of classes. Therefore, the designer of the
information extraction task is required to anticipate, at the time of design, what infor-
mation is required for future extraction. In some datasets, it is possible to determine the
pragmatic types based on the section the table is in or some other identifier. However,
we consider this practice relatively rare for literature data sets. A machine learning
is the best performing method for datasets that do not have labelled table pragmatics.
The challenge for designing pragmatic classification is to identify relevant pragmatic
classes.

Information extraction using TableInOut is designed for extracting variables and
their values. It is possible to develop rules that can extract a number of patients, the age
of patients, weight, height, BMI or race. However, extracting multiple values and their
relationships requires additional steps, especially if one of the related entities is not
presented in the table (e.g. drug-drug interaction). We have proposed a modification
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of the method that uses the output of functional, structural analysis, semantic tagging
and pragmatic analysis to extract drug-drug interactions from structured product labels.
The method modification uses lexical cues for finding one variable in the table, but has
to look outside the table and link the variables afterwards.

Precision, recall, and F1-score of functional, structural and pragmatic analysis was
over 0.92. This is the state-of-the-art at the moment, however, it also means that al-
most 10% of cells are falsely classified to the areas they do not belong. F1-score of
information extraction task was in the range of 0.82-0.94. This is often considered as
good performance. However, 6%-18% of information were missed or are false posi-
tives. Some of the errors of information extraction are propagated from the previous
steps, such as functional or pragmatic analysis. Also, relatively acceptable levels of
errors in information extraction can be propagated further, to other systems that are
using information extraction output. This propagation of errors from the lower stages
of analysis to the higher is a common problem in text mining systems and may lead to
unacceptable levels of errors in the final system.

8.7 Availability

The implementation of the table disentangling method, covering functional, structural
and pragmatic analysis is available as TableDisengangler tool at https://github.
com/nikolamilosevic86/TableDisentangler.

We have created a web application for exploring the data from disentangled tables
from clinical trial papers in PMC. The page can be accessed on the following address:
http://gnteam.cs.manchester.ac.uk/demos/table_explorer/.

Clinical trial data set retrieved from PMC on which TableDisentangler was run
in order disentangle tables and make them browsable using the created web appli-
cation is available on Mendeley Data at https://data.mendeley.com/datasets/
wk53twxddf/1.

The implementation of the TableInOut wizard that follows table information ex-
traction framework and allows creation of lexical, semantic and syntactic rules is avail-
able at https://github.com/nikolamilosevic86/TabInOut.

The code is published under GNU GPLv3 licence. The data set is published under
Creative Commons BY 4.0 licence.



Chapter 9

Conclusion and Future perspectives

9.1 Summary of thesis contributions

This thesis proposed, developed and validated a framework for information extraction
from tables in the biomedical literature. More precisely, the main contributions are:

• A model of tables. Types of tables and common table structures in the biomed-
ical literature were investigated, including the means and patterns of present-
ing values. We proposed a model of tables according to table dimensionality,
which includes list (one-dimensional tables), matrix (two-dimensional tables)
and multi-dimensional tables with two sub-types, namely super-row tables (pre-
senting additional dimensions using super-row structures) and multi-tables (con-
sisting of multiple tables merged together). This model of tables assists the anal-
ysis of functional areas of the table and disentangling inter-cell relationships.

• A methodology to disentangle table structure. The methodology analyses ta-
bles based on the arrangement of cells, their spanning, content and content em-
phasis in order to discriminate functional areas of the table (navigational vs data
areas). The methodology is mainly rule-based, however, in the case of a dataset
with a lack of emphasis features, it can fall back to a machine learning-based
methods that can be integrated with heuristics. Based on the functional areas
and table type, the methodology finds which cells are related and in which man-
ner. Disentangling the table structure helps to map a table to a format that can
be queried based on its content, functional areas and relationships, and facilitate
information extraction.

174
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• Data model for storing and querying disentangled table data appropriate
for further processing. We presented a data model that allows for querying
data disentangled by the previously described methodology. The data in this
format can help users find information and create complex queries. This data
model can also assist with more advanced tasks such as information extraction,
question answering and even navigating tables for visually impaired people.

• A multilayer approach for information extraction from tables. We presented
a multi-layer, hybrid approach for information extraction from tables that uses
table detection, a functional, structural, pragmatic analysis of tables, semantic
tagging of table content, target cell selection and syntactic analysis of the cell
content. The methodology uses a heuristic, rule-based and machine learning-
based approaches to obtain the most efficient results.

• A library of common data presentation patterns. We presented a method
and have developed a library of the most common, numerical data presentation
patterns that map presented values to their components. The components are
descriptive and add additional layer of the meaning to the extracted values. To
distinguish the meaning of the value, the rule-based method utilizes value/vari-
able description, its pattern and its word order in navigational table areas.

• Application of the presented methodology to case studies. We applied the
presented model and methodology to two case studies. The aim of the first case
study was to extract demographic and other baseline clinical trial characteris-
tics, while the aim of the other one was to explore extraction of relationships
by applying methodology to the task of extracting drug-drug interactions. The
studies were performed in order to demonstrate the potential of the presented
methodology and to identify remaining challenges.

9.2 Future work

A number of areas for future work have been identified in this work and each will be
discussed in detail in this section.

1. Generalization for other document formats. The major limitation of this work
is that the presented methodology only supports documents in an XML format.
A large amount of scientific literature is published in PDF and other document
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formats are also used frequently. Our methodology provides general heuristic
guidelines for functional analysis. However, in order to implement this approach
it is necessary to apply optical character (and object, including lines) recognition
and other techniques to transform and disentangle tables from visual represen-
tation to the appropriate representation for computational handling. Once tables
are transformed to the proposed data model and stored in a database, it is possible
to apply tools developed in this thesis for information extraction.

2. Generic extraction of relations. The methodology presented in this thesis pro-
vides a framework for extracting single information with its descriptors from a
table. As described in our DailyMed case study, our methodology lacks the ca-
pacity to extract relations. Primarily we focus on extraction of single values or
entities - the extraction template and recipe lack the capacity to extract multi-
ple concepts with a given relationship. As demonstrated by extending extraction
methodology, it is possible to use the table disentangling data model for relation
extraction. Drug-drug and protein-protein interaction research from the literature
is an emerging field and a large amount of this information is stored in tables.

3. Integrate the curation system with information extracted from text. Infor-
mation extraction from text is an active research area. To date, a number of
approaches have been proposed for extracting values, concepts and relations. In
this thesis, we propose an approach that is able to help extract value and con-
cept information from tables. However, none of these approaches will extract
all the presented information. About 30%-40% of information in clinical trial
publications about the age of patients and gender distribution, is presented in ta-
bles. In many publications, authors present part of the information in tables and
the remainder in text. In order to develop an efficient data curation engine, it is
desirable to extract and curate complete information of interest from all docu-
ment areas. This includes text, tables and figures. Complete information can be
obtained only by integrating information from text and tables in publication.

4. Evaluate effects of assisted curation. In this work we have not tested the ef-
fects on speed and accuracy of machine assisted data curation for table mining.
Assumption that it will significantly increase curation speed is based on the lit-
erature on assisted curation from text. It is left for the future to design user
interface and examine the gains of assisted data curation from tables.
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5. Explore table representations for deep learning. In the recent years, deep
learning and deep neural networks archived successes in many areas, raging from
playing games to natural language processing (Schmidhuber 2015, LeCun et al.
2015). Several text vector representation models significantly improved perfor-
mance of text classification, named entity recognition and information extraction
in text (Mikolov et al. 2013, Pennington et al. 2014). These models are able to
handle linguistic context of the words in text. However, they are not designed to
handle visual structures and make predictions based on them. Vector representa-
tions that would involve both context and structure of the article element should
be explored in the future. Also, performance of information extraction using re-
current neural networks in combination with the mentioned representation model
should be further explored in the future.

6. Examine other text mining tasks. In the past, approaches in information re-
trieval (Hearst et al. 2007, Liu 2009), information extraction (Embley et al. 2005,
Mulwad et al. 2013) and knowledge discovery (Wong et al. 2009, Xu & Wang
2015a) from tables were presented. Some text mining tasks, such as relation ex-
traction, summarization, question answering, topic segmentation and recognition
have not been examined. These research fields lack research activity, especially
in the biomedical domain that is rich in tables that provide valuable information
important for experiment reproduction, evidence synthesis and future research.
This thesis provides a foundation with a table and data model for table analysis
that can be utilized for higher layers of table analysis to solve said tasks. This is
especially true for PMC data, for which we provided methods that perform the
functional and structural analyses. We briefly mentioned topic recognition in our
pragmatic analysis, which recognizes the main table topic. However, the extrac-
tion task designer assigned possible topics manually. An automatic and generic
topic analysis mechanism that can automate pragmatic analysis remains a task
for future development. Question answering relies on information extraction and
information retrieval but also employs a number of specific normalization tech-
niques. The specifics of table data and the influence of table structure on question
answering also remain tasks for future development. Table summarization may
help with large and complex table reading. Summarization would aid a reader in
determining whether or not information he/she is looking for may be stored in
the table as well as present the most important findings to a user without going
into the table (e.g. statistically significant results). This task requires complex
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semantic analysis of the table data, as well as analysis of the surrounding text.

7. Table annotation format, software, and data. At the moment there are only
few proposed table annotation schemas, while annotated corpora of tables are
rare. Annotated corpora would facilitate development of novel table mining
methodologies. Development and standardisation of the currently proposed an-
notation schema, integration of these schemas into easy-to-use software for non-
expert user and development of annotated corpora of tables in various domains
and for various table mining tasks will be essential for the advancements in the
area.

9.3 Final remarks

This thesis examined tables in biomedical literature, with a focus on clinical trial liter-
ature and drug labels. It was found that tables are frequent in the biomedical domain,
however, it also depends on sub-domain: there are more than 3 tables per article in
clinical literature and more than 10 per structured drug label. Vast information about
patients, adverse events, procedures and results are stored in tables - out of reach for
traditional text mining techniques. Although a number of table processing techniques
have been proposed in the past, none provided a complete pipeline for information ex-
traction for all table structures found in biomedical literature. The aim of this thesis
is to provide a methodology that facilitates easy-to-use information extraction from all
tables in a given domain.

Since tables are a structured document element, containing textual content in its
cells, the analysis of tables requires several layers. First, table structure has to be disen-
tangled. Table structure disentangling consists of two layers: functional and structural.
In the functional layer, functional areas of the table are recognized while in the struc-
tural layer, table structure is analysed and relationships between cells are disentangled.
Once the structure is disentangled, analysis of the content can follow. As language
contains syntactic, lexical, pragmatic and semantic analysis layers, all these layers can
be applied to table content as well. However, in the table, meaning can be spread to
several, related cells and so this analysis has to be performed in relation to its structure.

This thesis provides a framework for table analysis and information extraction in
particular. Our framework consists of the description of analysis layers, table model,
data structures and the recipe for disentangling tables and information extraction. Our
methodology for table disentangling is a foundation for table analysis. Functional and
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structural analysis is required for any further table mining tasks, such as information
extraction, information retrieval, question answering, summarisation, etc. Therefore,
our method enables table mining tasks to be performed for the vast variety of table
structures. The provided method is a recipe for extracting information from clinical
literature with a 0.82-0.94 F1-score, which represents the state-of-the-art in table infor-
mation extraction performance. The information extraction methodology is iterative,
which means that some of the presented performance can be refined and improved.

Finally, tables often contain information that can facilitate future research or enable
reproduction of research, so this information should not be overlooked. This thesis
enables large-scale, semi-automated data curation that takes into account all available
information from all document structures. Semi-automated curation will significantly
increase the speed and accuracy of creating curated databases.



Glossary

ATC The Anatomical Therapeutic Chemical (ATC) Classification System is used for
the classification of active ingredients of drugs according to the organ or system
on which they act and their therapeutic, pharmacological and chemical prop-
erties. Drugs are classified in groups at five different levels. The drugs are
divided into fourteen main groups (1st level), with pharmacological/therapeu-
tic subgroups (2nd level). The 3rd and 4th levels are chemical/pharmacologi-
cal/therapeutic subgroups and the 5th level is the chemical substance. 11, 137,
138

Caption describes the table content and subject. Overview of what table is about and
what is presented in table.. 23

Cell is the basic grouping within a table. Cells usually contain only one value, word,
phrase or concept and are divided by horizontal and vertical lines.. 23

Column is a set of vertically aligned table cells.. 35

DailyMed is a website operated by U.S. National Library of Medicine (NLM) that
publishes up-to-date drug labels. The content published on DailyMed is col-
lected from the pharmaceutical companies by U.S. Food and Drug Administra-
tion (FDA). The documents are published using HL7 version 3 Structured Prod-
uct Labelling (SPL) standard in XML format.. 8, 26, 30, 62, 76, 81, 82, 88–90,
92, 132–135, 139, 140, 149, 154, 163, 167

Footer provides more detailed information about the table and is usually placed be-
low the table. Footer often presents the legend for symbols used in the table or
observations about the table data.. 35

Functional table analysis is a process of identifying functional areas within table,
such as header, stub, super-row and data areas.. 37
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Gene Ontology defines concepts/classes used to describe gene function, and relation-
ships between these concepts. 204

Header is usually top-most row (or set of multiple top-most rows) of a table and
defines the columns’ data. 23

Information extraction is a task of automatically extracting structured information
from unstructured or semi-structured machine readable documents. 103

Information retrieval is finding material (usually documents) of an unstructured na-
ture (usually text) that satisfies an information need from within large collections
(usually stored on computers). 46

LOINC (Logical Observation Identifiers Names and Codes) is an universal code sys-
tem for reporting laboratory and other clinical observations. From 1999, it was
identified by HL7 as a preferred code set for laboratory test names in transac-
tions between health care facilities, laboratories and public health authorities.
132, 133, 135, 138

MEDLINE is the U.S. National Library of Medicine (NLM) premier bibliographic
database that contains more than 27 million references to journal articles in life
sciences with a concentration on biomedicine. 25, 30, 81

Navigational cells (access cells) describe and label data cells. Header, stub and super-
row cells are referred together as navigational cells.. 23

Pragmatic table analysis is a process of analysing the purpose of the table in docu-
ment. Also pragmatic analysis analyses what kind of information is presented in
a given table.. 94

Row is a set of horizontally aligned table cells.. 35

Semantic analysis is a process of analysing the meaning of the table and its data.. 122

SNOMED-CT is a systematically organised computer processable clinical health ter-
minology distributed around the world by SNOMED International. 204

Structural table analysis is a process of identifying relationships between cells in a
table.. 37
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Stub (row header) is typically the left-most column of the table, usually containing
the list of subjects or instances to which the values in the table body apply.. 23

Super-row creates an additional dimension of the table and additionally, describes
table data. The sub-header row is usually placed between data rows, separating
them by some dimension or concept.. 23

Syntactic table analysis is a process of analysing the syntax of the cells’ content..
113

Table detection is a process of recognising or location table in the article.. 37

TF-IDF (Term Frequency, inverse document frequency) is a numerical statistical mea-
sure that is intended to indicate how important is some term in a corpus of doc-
uments. TF-IDF is usually used in information retrieval.. 43, 47, 51



Acronyms

ACQ Asthma Controlled Questionnaire. 125, 129, 153

API Application Programming Interface. 204

AQLQ Asthma Quality of Life Questionnaire. 125, 129, 153

ASCII American Standard Code for Information Interchange. 38–41, 43, 44, 51

BMI Body Mass Index. 116, 120, 163

CALS (Continuous Acquisition and Life-cycle Support. 35

COPD Chronic Obstructive Pulmonary Disease. 124–126, 129, 131

CRF Conditional Random Fields. 39, 44, 51, 85

CSS Cascading Style Sheet. 39, 43, 154

CUI Concept Unique Identifiers. 137

FDA Food and Drug Administration. 52, 132

FEV1 Forced Expiratory Volume in 1 second. 125, 129

FN False Negative. 85

FP False Positive. 85

GUI Graphical User Interface. 205

HMM Hidden Markov Model(s). 39, 42

HTML HyperText Markup Language. 27, 30, 34, 38, 42–44, 46, 51, 54, 62, 92
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ICD-10 International Classification of Diseases 10. 204

MeSH Medical Subject Headings. 204

MMR Mismatch Repair Database. 52

OCR Optical Character Recognition. 38, 39, 41, 47, 82

PDDI Potential Drug-Drug Interaction. 132, 133, 143, 144

PDF Portable Document Format. 27, 30, 38–42, 44, 47, 51, 54, 92, 163, 166

PEF Peak Expiratory Flow. 125, 129, 153

PMC PubMed Central. 26, 30, 62, 70, 76, 81, 82, 87–89, 92, 97, 106, 112, 122, 126,
139, 149, 150, 154, 163, 168

RDF Resource Description Framework. 43, 44, 46, 49, 204

SGML Standard Generalized Markup Language. 35

SGRQ St. George Respiratory Questionnaire. 125, 129, 130, 153

SKOS Simple Knowledge Organisation System. 63, 204

SPL Structured Product Label. 132–135, 138, 139, 143, 144

SPLICER Structured Product Label Information Coder and Extractor. 133

SQL Structured Query Language. 46, 198

SVM Support Vector Machines. 39, 42, 52, 97

TP True Positive. 85

UMLS Unified Medical Language System. 53, 63, 74, 111, 117, 137, 138, 156, 204,
209

W3C World Wide Web Consortium. 162, 204

XML eXtensible Markup Language. 27, 30, 34, 35, 39, 41, 42, 46, 51, 62, 70, 76, 77,
82, 84, 87, 88, 90, 92, 114, 130, 133, 134, 138, 149, 154–156, 161, 163, 166
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Appendix A

Case study on extraction of BMI,
weight and number of patients

A.1 INTRODUCTION

The amount of published scientific research is accelerating: the number of published
papers is growing at a double-exponential pace (Hunter & Cohen 2006). MEDLINE
contains over 25 million references1 and it is impossible to cope with this amount of
published research.

Text mining provides tools and methods to deal with large numbers of articles in
biomedicine. However, these efforts have been focused mainly on the processing of
unstructured text and most of them ignored lists, tables and figures.

Tables are used for storing large amounts of factual or statistical data in a struc-
tured, concise and human-readable way (Tengli et al. 2004). They also provide a way
for storing multidimensional data. The visual layout of a table often describes relation-
ships between the items in the table. Because of the variety of layouts, it is challenging
to perform analysis of data in this form.

In biomedicine, important experimental information, such as the settings and the
results of experiments, interactions between substances, drug side effects, information
about arms and patients, are usually stored in tables. In the PMC database, more than
72% of research articles contain tables. We manually found that some of the documents
in the database do not contain the whole article in XML format (scanned documents,
containing only parts in XML). Also, we calculated that the PMC articles contain on
average 2.72 tables.

1http://www.ncbi.nlm.nih.gov/pubmed
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In this paper, we present a method for table decomposition and a case study on
extracting information from tables in biomedical literature. The aim of our study is
to examine the feasibility of information extraction about patients from tables in clin-
ical literature. Our case study performed extraction of number of patients, body mass
indexes (BMI) and weight of patients from tables.

A.2 BACKGROUND

Hurst (2000) was among the first to examine tables from the text mining perspective.
He proposed a model of tables with five components: graphical, physical, functional,
structural and semantic. Also, Hurst created one of the first table mining engines. He
split the process of table mining into three parts: table detection, functional analysis
and information extraction.

The table detection step examines how to correctly detect tables in the documents.
Work has been done in detecting tables from PDF, HTML and ASCII documents using
Optical Character Recognition (Kieninger & Strieder 1999), machine learning algo-
rithms such as C4.5 decision trees (Ng et al. 1999) and SVM (Son et al. 2008) or
heuristics (Yildiz et al. 2005).

The second step is functional analysis and it examines the purpose of areas of the
table. The aim of this step is to identify which cells contain raw data and which contain
navigational data. Approaches using machine learning methods like C4.5 decision
trees (Chavan & Shirgave 2011) or CRF (Wei et al. 2006) were used.

The final step is semantic processing. In this step, relationships and semantics of
the table elements are analysed. Semantic processing of the tables is used for informa-
tion retrieval (Hearst et al. 2007, Divoli et al. 2010), information extraction (Mulwad
et al. 2010, Wong et al. 2009) and question answering systems (Wei et al. 2006).

So far, no work has been conducted on extracting information from tables in clini-
cal literature.

A.3 METHOD

We aim to extract information from tables about participants of the clinical trials such
as their number, BMI and weight. The method we propose is composed of two parts:
table decomposition into structures that are more suitable for further processing and
information extraction. We propose a way to decompose tables into cell-level data
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structures while maintaining information about relationships between elements of the
table. Table decomposition, viewed through Hurst’s model, represent functional and
structural table analysis. The second part considers information extraction from the
tables, which corresponds to semantic analysis in Hurst’s model.

Data

Our dataset had 2517 documents collected from a clinical trial publications from Pub-
MedCentral (PMC)2. Out of these documents 568 had no XML presentation of tables.
They had a reference to the image of a scanned table. The total number of tables in our
dataset was 4141.

Firstly, we conducted a manual analysis on a small sample of 70 PMC documents
with 217 tables. Based on our analysis we were able to create rules to identify structure,
decompose tables in a structured manner and extract information.

A.3.1 Table Decomposition

Table decomposition contains five steps.

In the first step, the algorithm is locating a table with its meta-data such as caption
and footer. These data are stored in particular XML tags.

In the second step, our algorithm locates headers and stubs of the table. Cells that
are inside the thead tags are labelled as header cells. The left-most column cells are
labelled as the stub cells. If this column has row-spanning cells, then the following col-
umn is also labelled as part of the stub. Row-spanning cells are usually used to group
and categorise other stub cells in the following column. The first column with no row-
spanning cells outside header will be the last column labelled as the stub. Similarly,
complex headers with column-spanning cells are labelled, if there is no thead tag. If
there is no thead tags, our method is checking whether the table does not have a header
by checking similarity of value types between first five rows. Since the table might
have multiple layers of headers, five was the optimal number of rows for this check,
since it indicates in an unambiguous way separation between types. If the cell in the
first row has a different type (e.g. text) from the following rows (e.g. numeric), the
first cell is labelled as part of the header. If all five cells have values of the same type,
the table has no header. Types of cells could be empty, numeric (integer or floating

2http://www.ncbi.nlm.nih.gov/pmc/
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point number), partially numeric (number with special characters and punctuations)
and string.

In the third step, spanning cells (recognised by the appropriate XML attribute) are
split and the content of the cell is copied to all the newly created cells (Chen et al.
2000).

The fourth step is classification of the table by number of dimensions. Navigational
paths are read differently for one, two or multi-dimensional tables. Our algorithm
identifies three types of tables using heuristics rules. List (one dimensional) tables
contain a list of items in one or more columns (space saving reasons). They can be
recognized if it has only one column, the header is spanning through all the columns or
if there is same header for all the columns. Matrix (two dimensional) tables contain
data arranged in simple matrix of cells (Example can be seen in Figure A.3). Super-
row (multi-dimensional) tables are similar to matrix tables, but the presence of super-
rows (Tengli et al. 2004) changes the way they are read (Example can be seen in Figure
A.1). Super-rows are usually presented as a row inside the data part of the table that is
spanning through all columns or a row with a value only in one cell.

Figure A.1: Example of the table (PMC 29053) and the decomposition XML output
for one cell from that table

In the last step, our method is iterating through all data cells and trying to find
the correct navigation path. Navigation path is a path through the navigational cells
(header, stub, super-rows) that logically annotates the data from the data cell. In list
tables only the header value is part of the navigation path. For matrix tables, the algo-
rithm has to read the header cell in the same column as the given cell, the stub cell in



204 APPENDIX A. CASE STUDY

the same row as the cell and the header value for the stub’s column. Since the super-
row table may have a number of super-row levels in a tree-like structure, we created
a stack structure that stores current super-row paths, as the algorithm iterates through
the cells. For this kind of table, our method reads a header value for the stub (stub’s
label), all levels of super-rows above the item of interest, the stub value and the header
value above the cell.

Data retrieved from the tables are stored in the XML elements (see Figure A.1).

A work-flow diagram of our method can be seen in Figure A.2.

Figure A.2: Workflow of table decomposition method

A.3.2 Table Information Extraction

We performed two case studies on information extraction from tables. The first study’s
objective was to extract the total number of patients, while the second had to extract
BMI and weight of patients from a clinical trial publication. In the second task, the
participant group names had to be extracted together with the appropriate mean BMI
or weight. For example, the table shown in Figure A.3 has two participant groups.
Extracted information will be: [Absolute Risk (n = 232): BMI: 27.4 (4.5)] and [NNT
(n = 225): BMI: 27.0 (4.3)].

A.3.3 Extraction of Number of Trial Participants

The number of participants is a numerical value and there is a limited set of trigger
words to indicate its appearance in a table. The number of patients could be presented
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in different places in the table and it may not be presented as a single (overall) number,
but also as a number of participants per each arm of trial.

The table caption usually presents the total number of the clinical trial participants.
We extract the number of participants using two rules. The first rule is looking for
a number, followed by one of the trigger words (subject, patient, person, individual,
people, infant) in either singular or plural in its vicinity. The trigger word does not
need to be the word next to the number, since in some cases the authors may want to
specify the participants more (e.g. 16 1-month-old infants, 1239 blood donors). The
second rule is looking for a pattern consisting of letter n, the equals sign and a number
(e.g. n=19).

There are several ways to store the number of clinical trial participants in naviga-
tional cells of the table. One way is to store the total number of patients in a stub,
while the other is storing it in the header. Usually, in stubs and headers, the number of
patients are presented in the form of mathematical expression (e.g. n = 19). In stubs,
we are often expecting the total number of patients in one cell. Since header may have
values per arm in each column, we created a list of candidates. Firstly, all the values
are added to the list. If the content of some cell contained the word ”overall”, ”total”
or the phrase ”all patients”, that value is considered as the total number of participants.
However, if such cell does not exist, we check if the stub’s header cell has a value for
number of patients. If none of this is the case, the values from the header columns are
summed (example of this can be seen in Figure A.3).

Figure A.3: Example of a clinical trial demographic table that contains information
about patients BMI (PMC 58836)

Also, the number of patients may be placed in the body of the table. Similarly to
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headers, data cells may present the number of patients in parts (e.g. per arm), as sin-
gle total number, or, in some tables, they may contain both partial and total numbers.
Since the data cells may contain only numerical values, looking for trigger words and
patterns has to be done in the appropriate stub cells. We have defined trigger phrases
which our method searches for in the stub (Number of patients, Num. of participants,
etc.). If found, values from the data cells are extracted and added to the list of candi-
dates. Headers also need to be analysed (check if header value contain words ”overall”,
”total” or ”all patients”) in order to determine if there is some cell presenting the total
number of participants. If there is no such column, the summed value represents the
total number of participants.

A.3.4 Extracting Body Mass Index and Weight

The second case study extracts information about BMI and mean weight of trial par-
ticipants. This task is much more complex because we want to extract information,
together with the participant group names in which these values were measured.

For the BMI extraction, our approach is to look in the stub of the table for trigger
phrases ”body mass index” or ”bmi”. If a table contains these trigger phrases, values
from the table body are extracted. However, we also checked whether the value is in
the appropriate range (15-40). If the value is not in this range, it does not represent
mean BMI value, but other value such as BMI change, standard deviation, etc. If there
is more then one column with BMI values, the headers are probably the names of the
participant groups. To identify header cells that do not represent participant group
names, list of terms is created with tokens such as ”range”,”p*”,”±”,”T”,”p-value”,”p*
value”,”%”,”significance”. Appearance of these words indicates that the column does
not contain BMI values.

Using these heuristics it is not possible to obtain only arm names, but rather patients
groups, since the authors may create demographic tables where they divide patients
either by treatment (placebo, penicillin), location (Paris, Toulouse), follow-up period
(data on enrolment, 1 week and 1 month after treatment) or outcomes (survivors, non-
survivors).

Similarly, weight of patients was also extracted. In this case trigger phrases were
”weight” and ”bodyweight”. Since tables can present a number of different measures
related to weight, a stop list was introduced, which had the role of discarding entries
if the stub contains a word from the list near the trigger phrases. Stop list contained
words like ”loss”, ”gain” and ”change”. In this case, we were not able not define the
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range of values since values may be in different measurement units (g, kg, lb) and a
wide variety of values is possible.

A.4 RESULTS

A.4.1 Table Decomposition Results

We have processed all 2,517 PMC clinical trial documents. Our method extracted data
from 3,573 tables. The corpus contained 55.24% of matrix, 0.76% of list and 42.46%
of sub-header tables. Since each table has on average 80 cells, it would be impossible
to evaluate the whole dataset. We have chosen 100 random tables from each type
of tables and evaluated the algorithm’s output for them manually by inspecting every
table and its cell structures for correctness. If at least one XML cell structure is not
read correctly, table is labelled as incorrectly decomposed.

In Table A.1, we present the results of our evaluation.

Class Tables in dataset N. Eval. Accuracy
Matrix tables 1,974 (55.24%) 100 89%
Super-row tables 1,517 (42.46%) 100 81%
List tables 27 (0.76%) 27 77.7%
Multi-table tables 55 (1.54%) 55 49.1%
Total 3,573 282 84.9%

Table A.1: Accuracy of table decomposition system

Matrix tables were easiest for decomposition and the accuracy would be even
higher if our dataset had perfect markup. Due to the non standard XML labelling, our
method in some cases was not able to correctly recognize table type or borders of navi-
gational areas. Some of the mislabelling include spanning cells (not using the attribute,
but rather using multiple cells) and incorrect labelling of headers with thead tags (in-
correctly tagging something as a header). Super-row and list tables performed slightly
worse. We encountered a small number of tables that actually presented several similar
tables merged together (we called them multi-tables). We included a simple algorithm
that is able to recognize navigational paths in them based on presence of horizontal
lines. However, this algorithm was not good enough to recognize navigational path
with high performance. Due to the small number of these tables, they did not affect
our overall performance. Overall accuracy of table decomposition was 84.9%.
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A.4.2 Number of Patients Extraction Results

For the extraction of the number of patients, we processed all documents in our dataset.
The total number of participants was extracted from 758 documents. For evalua-
tion purposes we randomly selected 50 documents. Our system performed with a
F-measure of 83.3%. More detailed statistics can be seen in Table A.2.

Precision 73.53%
Recall 96.15%
F-measure 83.3%

Table A.2: Performance of extracting total number of patients

A.4.3 BMI, Weight and Patient Group Name Extracting Results

For the extraction of BMI and weight, we selected dataset that contains 113 documents,
having in at least one of the tables token related to BMI or weight. We separately
evaluated the patient group, weight and BMI extraction. The results are shown in
Table A.3.

Class TP FP FN Precision Recall F-measure
BMI 72 22 6 76.6% 92.3% 83.7%
Participant group 153 93 27 61.45% 85% 71.32%
Weight 95 133 6 41.66% 94.05% 57.75%

Table A.3: Performance extracting BMI, weight and patient groups from PMC clinical
trial documents (TP - true positives, FP - false positives, FN - false negatives)

Results for BMI and weight are dependent on how the participant groups were rec-
ognized, because each extracted value is assigned to the participant group. Participant
groups were extracted with a F-measure of 71.32%. They are hard to extract correctly
because they may be formed from a wide range of concepts (location, drug, treatment,
time, etc.) and may include acronyms or abbreviations. Complex tables, with multiple
levels of headers may create additional complexity, since it might be hard to determine
where the name of the group ends and where technical or statistical separation of the
table’s cells starts (ie. mean and standard deviation columns).

BMI has a higher F-measure than participant group extraction. This may look
strange, because in order to extract BMIs, the patient group has to be extracted cor-
rectly as well. However, defined BMI range made a large contribution to discarding
false positives.
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Our method for weight extraction performed with high recall but with very low
precision. This is due to the fact that the method was matching trigger phrases, but
did not have a well crafted stop list, that could help to distinguish actual patient weight
from other weight related concepts.

A.5 CONCLUSION

Information extraction from tables is not extensively researched. However, in many
fields, such as biomedicine, it could be useful, due of the importance of the data pre-
sented in tables. Information extraction from tables can use some of the established
text mining techniques, but due to the challenge of understanding the visual layouts,
new approaches have to be developed as well.

We developed a methodology for table decomposition into cell-level data struc-
tures. Our method is able to read table data with associated navigational information.
Using these structures, it is easier to perform semantic analysis and information extrac-
tion. We performed a case study on extracting number of trial participants, BMIs and
names of the participant groups from clinical literature. Although we used relatively
simple rules for information extraction, our results are promising (F measure for BMI
extraction 83.7%, F measure for weight extraction over 57%). Our results indicated
that some information classes may be easier to extract, because it is possible to model
expected values, while the others remain a challenge.

The results of our case studies are comparable with state-of-the-art methods in ta-
ble information extraction. However, not many works report information extraction
from tables. Hurst (2000) reported the combined task of functional, structural and re-
lational analysis to have a F score of 83.13%. However, this task matches our table
decomposition task, which is just first part of our information extraction method. Gat-
terbauer et al. (2007) created generic information extraction system, but they reported
F measure of 52%. Tengli et al. (2004) reported the best F measure of 91.4% for infor-
mation extraction from tables. However, they apply a method on The Common Data
Set tables, which is a standardized presentation format for higher education data in the
United States. Compared to these tables, tables from PMC are not standardised in any
way.

The performance of our method is quite promising and indicates that information
extraction from tables is a feasible task. However, there is a space for advancement.
There is still the need for the human curators to control the system and correct mistakes.
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We believe our system will reduce data curation time for medical documents.



Appendix B

Database schema for functional and
structural table disentangling

Detected functions and relationships of cells can be stored in a MySQL database ac-
cording to our model. The database schema is presented in Figure B.1

The database schema is a representation of the data model containing three layers
– article, table, and cell. Table Article contains basic information about an article, such
as title, PMCID, journal where the article was published, etc. Since an article usually
has multiple authors, we store authors, their affiliations, and emails in separate tables.
ArtTable (short for Article Table) stores general information about the table, such as
table caption, the order in the article and footer. Here, we also store some table level
annotations, such as the structural type of the table or pragmatic class of the table. A
database table called Cell contains information about cells. For each cell, it contains its
content, positions (row and column number), references to related navigational cells
(headers, stubs, and super-rows). For easier processing, we created attributes in this
table that contain content of all stubs, headers, and super-rows that are related to the
particular cell. Since a cell can have multiple functions (e.g. header+stub, stub+super-
row, data+super-row), functions are stored in a separate table. Annotations are also
stored in the separate table with reference to the cell that they are annotating. This table
stores annotation concept id, annotations description, the span of the annotation inside
the cell and some provenance information about annotation source and the system that
was used for annotation. Tables stored in this manner can be easily queried using SQL.

In addition to storing disentangled tables and their metadata in the database, we
created a web application that can be used for exploring processed tables. Using our
web application user can explore tables and cells. For tables, user can select tables
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that contain certain string in their caption, footer, header, stub, super-row or data cells.
When exploring cells, application is able to find cells having given string in related
navigational areas (related header, stub or super-row cells). The web application is
available at http://gnteam.cs.manchester.ac.uk/demos/table_explorer.

The same data model that was implemented as described database schema was also
published as Table Mining Ontology available at https://github.com/nikolamilosevic86/
TableDisentangler/blob/master/TableMiningOntology.owl.



Appendix C

TableInOut: Implementation details

C.1 Introduction

In this part, we describe TableInOut (Table Information Out) software. TableInOut is a
tool for crafting rules for information extraction from the tables that were preprocessed
using table disentangling tool, which we call TableDisentangler. The TableInOut tool
follows the methodology described in Section 6.3.2. The tool is designed in a way
that it allows the user to specify the extraction task by specifying variable, pragmatic
table class, units of measure, lexical, semantic and syntactic cues. Once defined, it
extracts information according to the defined extraction rules, specifications and stores
extracted information in a relational database table containing columns as our defined
template from Section 3.3.4.

In the following sections, we give an overview of the architecture of TableInOur
software, as well as its relationship with other tools used in this project. The chapter
that follows, explains in more details implementation of the system. The final section
in this chapter discusses and evaluates several case studies of information extraction
performed with TableInOut software.

C.2 TableInOut architecture overview

The work-flow of information extraction using TableInOut is presented in Figure C.1.
The information extraction pipeline consists of two tools that were developed dur-

ing this project: TableDisentangler and TableInOut. TableDisentangler firstly disentan-
gles the structure of the table, annotates functional areas, relationships between cells
and the content of the cells using semantic resources. The output of TableDisentangler
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is stored in the relational database as it was presented in Appendix B. Data is enriched
and normalised using the annotation tool that we developed called Marvin. Once the
data is in the database, a user of the TableInOut software can define the extraction task
and extraction rules. The rule building process is usually an iterative process. Once
the task specification and rule set are developed, TableInOut extracts the information
from the table and stores them in a database table.

Figure C.1: Workflow of information extraction from tables using TableInOut

C.3 Marvin annotation tool

Marvin can annotate text using four knowledge sources (UMLS, WordNet, DBPe-
dia, SKOS vocabulary), or any combination of them, which can be configured in its
configuration file. Marvin firstly tokenizes the text. Tokenization is performed us-
ing OpenNLP (Baldridge, 2005) and the trained maximum entropy model provided by
OpenNLP.

After the tokenization, annotation over the tokens is performed. However, for each
knowledge source, the annotation is performed in a slightly different way.

Annotating using DBPedia. When annotating using DBpedia, our approach is to
generate unigrams, bigram, and trigrams from the supplied text. The rationale is that
there are a number of definitions on Wikipedia and DBpedia for concepts that are
one, two or three words long. After unigram, bigrams and trigrams are generated; we
capitalize the first letter since labels of DBpedia items are always with the first capital
letter. Also, our approach puts the rest of the text in lowercase. We query DBpedia for
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the generated strings. Querying is performed over the SPARQL interface. For testing,
we used the public DBpedia interface (http://dbpedia.org/sparql). However,
this interface has a certain restriction on the number of queries that can be submitted.
For larger texts, it is advisable to have a local instance of DBpedia and its SPARQL
interface.

Annotating using WordNet. While doing annotation using WordNet, Marvin is
performing also part-of-speech tagging over the inputted text. This is done using
OpenNLP part-of-speech tagger based on maximum entropy model for English down-
loaded from OpenNLP website. Part-of-speech tagging and tokenization are done in
that way that for each token, there is also a part-of-speech tag. Using tokens and part-
of-speech tags WordNet database is queried. The query returns all the possible senses
of the word with a given part-of-speech.

Results from the query of WordNet contain senses that are not what text is about.
Only one sense of the word is the actual sense in that context. With too many an-
notations for the senses, the annotations are not too useful. In order to retrieve only
the right sense or a small number of the most probable senses, we applied word sense
disambiguation.

In order to perform word sense disambiguation, we modified basic version of
Lesk’s algorithm (Lesk 1986). The basic idea of Lesk’s algorithm is to count the num-
ber of words in the surroundings of the analyzed word and the words that appear in the
dictionary definition of that term. The idea is very simple and there have been, over
the years, attempts to improve the algorithm (Banerjee & Pedersen 2002, Vasilescu
et al. 2004, Agirre & Edmonds 2007). The issue with the algorithm is that for different
words, the size of definition can be different. Also, the size of the context window can
be different. The ranking should not be the same if the number of matching terms are
the same for two definitions, but one definition has more words than the other. Cases
like this have to be weighted properly. In order to calculate weights for choosing the
right definition, we took 15 words left and right of the current word in the text, if they
exist, as a context. The algorithm is calculating for each definition how many words
from the definition are appearing in the context of the annotated word. The sum of
words appearing in both the context and the definition is divided by the number of the
words in the definition. The definition with the largest result is chosen as the mean-
ing of the word. If multiple definitions have the same result, they are all presented as
possible definitions of the word.
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Annotating using UMLS. Marvin is capable of annotating text using UMLS (Bo-
denreider 2004) with the aid of MetaMap (Aronson 2001). Marvin can send requests
for annotations to the MetaMap server in case it has the location of the MetaMap server.
Annotations with UMLS concepts are completely handled by MetaMap and Marvin
only enriches these annotations with prevalence information and indexes of the word.
Metamap and UMLS provide annotations for wide variety of concepts and semantic
types in biomedical domains because UMLS encapsulates almost 200 biomedical con-
trolled vocabularies and classification systems, including ICD-10, MeSH, SNOMED-
CT and Gene Ontology1. Since we were working with biomedical data, UMLS anno-
tations proved to be the most useful.

Annotating using SKOS vocabularies. Previously we described annotation with
WordNet, DBPedia, and MetaMap. These methods are using certain well-established
vocabularies and they cannot be changed (apart from vendor’s updates). However,
when performing tasks such as information extraction, sometimes it is necessary to use
custom made dictionaries. We have provided a method for users to supply a number
of custom vocabularies, which our system will load and use to annotate text. For the
vocabulary input format, we decided to use Simple Knowledge Organization System
(SKOS) format.

Simple Knowledge Organization System is a RDF vocabulary for expressing the
basic structure and content of concept schemes, such as thesauri, classification schemes,
taxonomies, terminologies, glossaries and other types of controlled vocabularies (Miles
et al. 2005). It is designed and recommended by World Wide Web Consortium as a
standard for representing controlled vocabularies (Miles & Bechhofer 2009). As a
W3C standard for representing vocabularies in RDF format, we expect that the format
is well developed and adopted in the community. For the reading of SKOS vocabulary
files we used SKOS API that has been designed to work with SKOS models at a high
level of abstraction (Jupp et al. 2009). We have tested the reading of SKOS files created
as export from ThManager 2.0, an open source tool for creating and visualizing SKOS
(Lacasta et al. 2007). The text which needs to be annotated is first transformed to low-
ercase and broken into the words using tokenizer. For each word, Marvin searches the
hash map that maps words into concepts. If found, it annotates that part of the text
with the associated concept. If the concept contains some broader concept, Marvin
will look up for that concept as well. Annotation with broader concepts is continued

1https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
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until the top level is reached. Since annotations are kept separately, it is possible to
annotate the same word in Marvin with multiple annotations.

C.4 TableInOut implementation details

TableInOut is developed in Python. The user can interact with the tool through Graph-
ical User Interface (GUI). GUI is designed in a form of wizard, containing in total
seven views. Each project, when defined, is described in a set of files in a defined file
structure. Folder structure of TableInOut project is presented in Figure C.2.

Figure C.2: Folder structure of a project in TableInOut

TableInOut root folder contains a folder named ”Projects”, where information about
table information extraction projects are stored, and a folder where predefined syntac-
tic rules are stored. From the set of predefined syntactic rules, the user can choose
one, reuse it or modify it. Project folder can contain multiple projects. Each project
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contains configuration file, containing information on the database to in which the
TableDisentangler preprocessed data is stored. In the context of TableInOut, the task is
an information extraction process with defined task specifications from Section 6.3.2
(information class name, pragmatic type of the table in which the information should
be searched for, lexical, syntactic and semantic rules for extracting the information).
One project can have multiple defined tasks that will execute sequentially, as ordered
in the project. Tasks can be used to model cases of extracting the same variable or
to extract multiple variables in one project. Task folder contains a definition of the
task, white list, black list and syntactic rules specific to the task. This file and folder
structure is read, edited or created during user’s interaction with the wizard. In the
execution phase, information from the file system is read, stored in the data structures
in memory and according to the loaded data structures, information extraction process
is executed.

Further we describe TableInOut wizard screens:

Project management screen
In project management screen a user can manage information extraction projects.

The user can create new projects, delete or load existing projects. Example can be seen
in Figure C.3.

Figure C.3: TableInOut project management screen
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Task management screen
Task management screen presents the list of tasks for the selected or created project.

In this view, a task can be created, edited, deleted and reordered (task are executed
in the order of presentation). From this screen database management screen can be
accessed. Adding a task opens task definition screen, while task editing will lead to
the same screen pre-populated with already defined values. From this screen, the user
can also start the execution of a task (execution screen). Example of the screen can be
seen in Figure C.4.

Figure C.4: Example of task management screen containing 6 variables and rules for
each variable. This set-up was used for case study described in Section 7.1.

Database management screen
The purpose of this screen is to provide information about the database, including

host address of database server, port number, database name, username, and password.
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Example of this screen can be seen in Figure C.5.

Figure C.5: TableInOut database management screen

Task definition screen
Task definition screen defines information extraction task on a high level. In this

screen user can define the variable name for the information that will be extracted,
pragmatic type of the table in which the information should be searched for, possible
and default unit and in which functional area of the table (header, stub, super-row,
stub) the information should be searched for. Task definition screen leads to lexical
and semantic rule definition screen. This screen is used for creating and editing task
cues. When the user is creating a new task, he/she needs to populate information about
the task. In the case of editing, a user is presented with the information defined in the
past and he/she can edit them. The example of the task definition screen can be seen
in Figure C.6.

Figure C.6: TableInOut task definition screen
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Lexical and semantic rule definition screen
This screen allows a user to define lexical and semantic rules and in which func-

tional area of the table they should be searched for. The screen contains two text boxes,
one of defining the white list, while the other for defining the black list. For both lists,
the user can define in which functional areas of the table list items should be searched.
The user can define lexical cues by adding words or phrases to the lists. The algorithm
will perform later matching of the given cues in defined table areas. Also, semantic
cues can be defined by stating semantic concept id or annotation type. Previously, the
table was annotated with some vocabulary (e.g. UMLS). These annotations will be
searched, and in case they are in the stated functional areas, the selected cell will be
flagged for extraction. In the case of the UMLS, we store its annotations concept id
(as annotation ID) and semantic types (as annotation types). Lexical and semantic rule
definition screen can be seen in Figure C.7, with example rule definition.

Figure C.7: Lexical and semantic rule definition screen. User can define lexical cues
just by stating them or by stating [word] as a prefix; semantic cues can be stated as
annotations ids, usually referring to concept ids in certain vocabulary, using [annID]
prefix or as annotation types, referring, for example, to UMLS semantic types of an-
notation, using [annType] prefix.
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Syntactic rule definition screens

Using syntactic rule definition screen user can define syntactic rules for extracting
information from the table. Syntactic rules are supposed to parse the content in cells
and extract the relevant information of interest (e.g. values of the given variable).
During the rule creation process, the user is prompt to select one of the pre-created rule
sets. These pre-created rule sets contain rules for extracting, for example, statistical
values (mean, standard deviation, range), alternative values (two separated numerical
values), or just one numeric integer or floating point value. After choosing one of the
pre-created rule sets, the user can add new or edit existing rules. Also, the user has
a choice to create a totally new rule set. Once created, rule sets can be reused in the
future. More details about creating syntactic rules and their syntax will be provided in
Section 6.3.3. Example can be seen in Figure C.8.

Figure C.8: TableInOut syntactic rule definition screen

Execution screen

Execution screen is the last screen of the wizard, that is presented while execution
of information extraction methodology is taking place. The extraction methodology is
selecting cells containing any of the defined white list keywords or annotations in the
specified areas. Selected cells are checked against the black list. In case they contain
cue from the black list the cell is not taken into account. Once cells are selected,
syntactic rules are applied to their content, information is extracted, and stored in the
database.
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C.5 Summary

In this part we presented implementation details of TableInOut software for informa-
tion extraction from tables. TableInOut uses the output of TableDisentangler, a tool
that follows the methodology for functional and structural table analysis. The output
of TableDisentangler is enriched using Marvin annotation tool that can annotate table
content using multiple knowledge source. Once enriched, user can develop lexical,
semantic and syntactic rules using TableInOut and perform information extraction.

TableInOut tool allows reuse of developed rules. It is possible to copy and modify
previously developed rules for the other variables. We have included a library of the
common numeric value presentation patterns in the TableInOut.

We have performed studies that were described as case studies previously. With
the use of TableInOut it was possible to replicate the results of the case studies and in
some cases we were able to improve the results.



Appendix D

Guide for writing syntactic rules

D.1 Overview

In this Appendix, we describe the syntactic analysis query language that was designed
for the purposes of the work described in this thesis. We developed an engine and de-
scription language for defining syntactic rules within selected table cells of interest. It
is used by TabInOut as the main engine and description language for defining syntactic
rules.

The rules are saved in a single file for each table information extraction project.
Then the rules are executed from top to bottom, therefore more specific rules should
be on top of the file, while the more generic rules should be at the bottom of the file

D.2 Writing a simple syntactic rule

Each syntactic rule contains three elements:

1. Rule name

2. Rule regular expression

3. Semantic assignment descriptors

The example of syntactic rule looks in the following manner:

+ S i n g l e F l o a t 1
( / d + [\ . ]{0 , 1}\ d ∗ )
1−>v a l u e
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The first line, that always starts with + symbol contains name of the rule. Name of the
rule starts after + symbol. Plus symbol determines the start of the new rule.

The second line is the regular expression of the rule. It is advised to use regular
expression groupings (brackets around the value or sequence of interest).

The third line is semantic assignment descriptor of the rule. This rule has only one
descriptor, for one regular expression group. However, rule can have many semantic
assignment descriptors. However, each rule can have only one name and only one
regular expression.

The presented rule is able to floating point values and integers.

D.3 Adding semantics to the syntactic rule

Here is presented a more complex rule:

+GetMean
(\ d +\ .{0 ,}\ d ∗ ) [ ? ] { 0 , } [ ( ] ( \ d +\ .{0 ,}\ d ∗ ) [ ) ]
1−>mean
2−>SD

This rule is able to detect values with standard deviation in the brackets. For ex-
ample: ”16.4 (2.3)”. The rule contains again name in the first line. Regular expression
contains two potentially floating point numbers. These numbers are in regex groups.
Then we have two semantic assignment descriptors. First is saying that the first value
is mean value, while the second value is standard deviation.

It is possible that for same representation, it is hard to tell what the value is, unless
we look at the navigational areas of the table (headers, stubs). For example, value
”16.4 (2.3)”, can be ambiguous. The first value can be both mean or median. If we
have such situation we can use the following rule:

+GetMean
(\ d +\ .{0 ,}\ d ∗ ) [ ? ] { 0 , } [ ( ] ( \ d +\ .{0 ,}\ d ∗ ) [ ) ]
1 : median , Median−>median
1−>mean
2−>SD

In this rule, name and regular expression are the same. However, we have addi-
tional semantic assignment descriptor. It again is for the first regex group (the first
value), and it has additional part after column symbol (:). After column symbol we can
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put a comma separated list of cues that will be searched in navigational areas (headers,
stubs, super-rows). In case cue is found that rule will be evoked. Otherwise, the next
(default descriptor will be used 1-¿mean). In this situation we assume that in case me-
dian is mentioned in header or stubs, the first value is median, otherwise the first value
is mean.

Another case is when we have multiple named groups and whose order matter. In
the previous cases we knew how to chose value, but we needed cues in order to assign
semantics. However, if we have value such as 18:19 and it is related to gender, we
cannot know whether there were 18 males or females participants.

For such cases, it is possible to use the following rule:

+GetMaleFemaleRule
(\ d + ) [ / : \ \ , ]{1 ,} (\ d +)
1 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem , women ,
Women , f ema le s , Females−>male
1 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ; male ,m,
Male ,M, Men , men , males , Males−>f em a l e
1−>male
2 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem , women ,
Women , Females , f ema le s−>f em a l e
2 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ; male ,m,
Male ,M, Men , men , males , males−>male
2−>f em a l e

Here we have a list after column of comma separated cues about males. After this
comes semi-column symbol (;). After semi-column comes comma separated list of
female cues. After that comes the assignment (-¿male).

In order to generalize, we can have a semi column separated list of comma sepa-
rated lists of cues for the words that have to come in certain order. In the given example
we are expecting to have one of the male cues appearing before some of the female cues
in navigational area in the first semantic assignment descriptor. In the second it is the
opposite. We expect some of the female cues to appear before any of the male cues.
Third descriptor is the default descriptor for the first group (the first value, e.g. 18) that
will invoke in case the cues are not present. Following 2 descriptors are same as the
first two, just for the second regex group (it assigns the semantics for the second value
(e.g. 19). The last descriptor is the default assignment for the second group.
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D.4 Conclusion

Our syntactic analysis query language is suitable for creating rules and adding seman-
tics for extracting particular parts of the cell content. The rules are reusable, especially
given that authors present values in tables in relatively standardized way. In the default
installation of the TabInOut are provided reusable files for extracting of cumulative sta-
tistical values, gender, integers, floating point numbers and alternatives (e.g. 19/21/12).



Appendix E

Examples of lexical and syntactic rules
for TableInOut

E.1 Rules for extracting age of patients

E.1.1 Rule configuration

C l a s s : Age
RuleType : Numeric
DefUni t : y e a r s
PosUni t : y e a r s , weeks , mounts , days , day , mounth
P r a g C l a s s : B a s e l i n e C h a r a c t e r i s t i c
RuleCrea t ionMech : L e x i c a l
Da ta InHeade r : 0
D a t a I n S t u b : 0
DataInSuperRow : 0
D a t a I n D a t a : 1

E.1.2 White list

Type : W h i t e L i s t
Header : 1
Stub : 1
Super−row : 1
Data : 0
WordLis t :
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[ annID ] : C0001779
age
Age

E.1.3 Black list

Type : B l a c k L i s t
Header : 1
Stub : 1
Super−row : 1
Data : 0
WordLis t :
change

E.1.4 Syntactic rules

Some unicode character needed to be changed from the original file, since latex does
not allow unicode character. There are multiple space characters or dash (–) character.
Also, pm correspondents to plus-minus (±) symbol.

+GetMean1
(\ d +\ .∗\ d ∗ ) [ ? ]∗[\−−−−− ,]+(\d +\ .∗\ d ∗ ) [ ( ] ∗ ( \ d +\ .∗\ d ∗ )
[ ? ]∗ [\pm ] [ ? ]∗ (\ d +\ .∗\ d ∗ ) [ ) ] ∗
1−>r a n g e m i n
2−>range max
3 : median , Median−>median
3−>mean
4−>SD
+GetMean2
(\ d +\ .∗\ d ∗ ) [ ? ]∗ [\pm ] [ ? ]∗ (\ d +\ .∗\ d ∗ ) [ ( ] ∗ ( \ d +\ .∗\ d ∗ )
[ ? ]{0,}[\−−−−− ,]+[ ]∗ (\ d +\ .∗\ d ∗ ) [ ) ] ∗
1 : median , Median−>median
1−>mean
2−>SD
3−>r a n g e m i n
4−>range max
+GetMean4
(\ d +\ .∗\ d ∗ ) [ ? ] ∗ [ \ ( ] ( \ d +\ .∗\ d ∗ ) [ ? ]{0,}[\−−−−− ,]+



E.1. RULES FOR EXTRACTING AGE OF PATIENTS 231

(\ d +\ .∗\ d ∗ ) [ \ ) ] ∗
1 : median , Median−>median
1−>mean
2−>r a n g e m i n
3−>range max
+GetRange1
(\ d +\ .∗\ d ∗ ) [ ? ] ∗ [ ( \ [ ] ( \ d +\ .∗\ d ∗ ) [ ? ]{0 ,}[\−−−−− ,]{1 ,}
[ ? ]{0 ,} (\ d +\ .∗\ d ∗ )
1 : median , Median−>median
2−>r a n g e m i n
3−>range max
+GetRange2
[ ( ] ( \ d +\ .∗\ d ∗ ) [ ? ]{0 ,}[\−−−−− , ;]{1 ,}[? ]{0 ,} (\ d +\ .∗\ d ∗ )
[ ) ] [ ? ]∗ (\ d +\ .∗\ d ∗ )
1−>r a n g e m i n
2−>range max
3 : median , Median−>median
3−>mean
+GetRange21
(\ d +\ .∗\ d ∗ ) [ ? ]{0 ,}[\−−−−− , ;]{1 ,}[? ]{0 ,} (\ d +\ .∗\ d ∗ )
[ , ? ] + (\ d +\ .∗\ d ∗ )
1−>r a n g e m i n
2−>range max
3−>mean
+GetRange3
(\ d +\ .∗\ d ∗ ) [ ? ]{0,1}[\−−−−− ,; t o ]{1 ,} [ ? ]{0 ,} (\ d +\ .∗\ d ∗ )
1−>r a n g e m i n
2−>range max
+GetMean6
(\ d +\ .∗\ d ∗ ) [ ? ]{0 ,} [\pm]{1 ,} [ ? ]{0 ,} (\ d +\ .∗\ d ∗ )
1 : median , Median−>median
1−>mean
2−>SD
+GetMean7
(\ d +\ .{0 ,}\ d ∗ ) [ ? ] { 0 , } [ ( ] ( \ d +\ .{0 ,}\ d ∗ ) [ ) ]



232 APPENDIX E. TABLEINOUT: LEXICAL AND SYNTACTIC RULES

1 : median , Median−>median
1−>mean
2−>SD
+GetMean8
(\ d +\ .∗\ d ∗ )
1 : median , Median−>median
1−>mean

E.2 Rules for extracting gender

E.2.1 Rule configuration

C l a s s : Gender
RuleType : Numeric
DefUni t : number
PosUni t : number , p e r c e n t ,%
P r a g C l a s s : B a s e l i n e C h a r a c t e r i s t i c
RuleCrea t ionMech : L e x i c a l
Da ta InHeade r : 0
D a t a I n S t u b : 0
DataInSuperRow : 0
D a t a I n D a t a : 1

E.2.2 White list

Type : W h i t e L i s t
Header : 0
Stub : 1
Super−row : 1
Data : 0
WordLis t :
Gender
g en de r
sex
Sex
male
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Male
males
Males
Female
f em a l e
f e m a l e s
Females
males / f e m a l e s
Male / Females
male / f e ma le
Male / Female
Male / Fem
Male : Female
male : f e ma le
m/ f
m: f
M/ F
M: F
women
Women
Men

Male
Female

E.2.3 Black list

Type : B l a c k L i s t
Header : 1
Stub : 1
Super−row : 0
Data : 0
WordLis t :
p v a l u e
p−v a l u e
P v a l u e
P−v a l u e
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change
i n c r e a s e
d e c r e a s e
p ;
P ;

E.2.4 Syntactic rules

+ G e tC omp lex Pa t t e r n
(\ d + ) [ ] ∗ [ ( ] ( \ d + [ . ] ∗ \ d ∗ ) [ ) / ] + (\ d + ) [ ] ∗ [ ( ] ( \ d + [ . ] ∗ \ d ∗ ) [ ) ]
1 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , women , f ema les , Females−>male
1 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, men , Men , males , Males−>f em a l e
1−>male
2 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , women , f ema les , Females−>male p e r c
2 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, men , Men , males , Males−>f em a l e p e r c
2−>male p e r c
3 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , women , Females , f ema les−>f em a l e
3 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, men , Men , males , Males−>male
3−>f em a l e
4 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , women , Females , f ema les−>f em a l e p e r c
4 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, men , Men , males , Males−>male p e r c
4−>f em a l e p e r c
+GetWithSymbols
(\ d + ) [ ] ∗ [Mm] [ ] ∗ [ ; , : / ] [ ]∗ (\ d + ) [ ] ∗ [ Ff ]
1−>male
2−>f em a l e
+GetWithSymbols2
(\ d + ) [ ] ∗ [ Ff ] [ ] ∗ [ ; , : / ] [ ]∗ (\ d + ) [ ] ∗ [Mm]
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1−>f em a l e
2−>male
+ GetFemalePerc
(\ d + [ . ] ∗ \ d ∗ ) [ ]∗ [%]+[ ] ∗ [ ( ] ( \ d + ) [ ) ]
1 : male , Male ,m,M, men , Men , males , Males−>male p e r c e n t
1 : Female , female , fem , F , f , Fem , women , Women , f ema les , Females
−>f em a l e p e r c e n t
2 : male , Male ,m, men , Men , males , Males−>male
2 : Female , female , fem , F , f , Fem , women , Women , f ema les , Females
−>f em a l e
+ G e t P e r c I n B r a c k e t s
(\ d ∗ [ , ]∗\ d + [ . ] ∗ \ d ∗ ) [ ] ∗ [ ( ] ( \ d + [ . ] ∗ \ d ∗ ) [ ) ]
1 : male ,m, Male ,M, men , Men , males , Males−>male
1 : female , f , F , fem , Fem , Female , women , Women , Females , f e m a l e s
−>f em a l e
2 : male ,m, Male ,M, men , Men , males , Males−>male p e r c
2 : female , f , F , fem , Fem , Female , women , Women , f ema les , Females
−>f em a l e p e r c
+ GetMaleFemale1Perc
(\ d + [ . ] \ d + ) [ / : \ \ , ]{1 ,} (\ d + [ . ] \ d +)
1 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , women , Females , f ema les−>male p e r c
1 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, men , Men , males , Males−>f em a l e p e r c
1−>male p e r c
2 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , women , f ema les , Females−>f em a l e p e r c
2 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, men , Men , males , males−>male p e r c
2−>f em a l e p e r c
+GetPercWOBrackets
(\ d + ) [ ]{1 ,} (\ d + [ . ] ∗ \ d ∗ ) [%]
1 : male , Male ,m,M, men , Men , males , Males−>male
1 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females
−>f em a l e
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1−>male
2 : male , Male ,m,M, men , Men , males , Males−>male p e r c
2 : female , Female , f , F , fem , Fem , women , Women , Females , f e m a l e s
−>f em a l e p e r c
2−>f em a l e p e r c
+GetMaleFemale1
(\ d + ) [ / : \ \ , ]{1 ,} (\ d +)
1 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , f ema les , Females−>male
1 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, Men , men , males , Males−>f em a l e
1−>male
2 : male ,m, Male ,M, men , Men , males , Males ; female , f , F , fem , Fem ,
women , Women , Females , f ema les−>f em a l e
2 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, Men , men , males , males−>male
2−>f em a l e
+GetMaleFromTxt
Male : [ ] ( \ d + ) [ ( ] + ( \ d +)[%]
1−>male
2−>male p e r c
+GetFemaleFromTxt
Female [ : ] [ ] ( \ d + ) [ ( ] + ( \ d +)[%]
1−>f em a l e
2−>f em a l e p e r c
+ GetMaleFemalePerc
(\ d + [ . ] ∗ \ d ∗ ) [ / : \ \ , ]{1 ,} (\ d + [ . ] ∗ \ d ∗ )
1 : male ,m, Male ,M, Men , men , males , Males ; female , f , F , fem , Fem ,
women , Women , f ema les , Females−>male p e r c
1 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
male ,m, Male ,M, Men , men , males , Males−>f em a l e p e r c
1−>male p e r c
2 : male ,m, Male ,M, Men , men , males , Males ; female , f , F , fem , Fem ,
women , Women , f ema les , Females−>f em a l e p e r c
2 : female , Female , f , F , fem , Fem , women , Women , f ema les , Females ;
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male ,m, Male ,M, men , Men , males , Males−>male p e r c
2−>f em a l e p e r c
+GetMaleFemale2
(\ d + ) [ ( ] { 1 , } ( \ d + [ . ] ∗ \ d ∗ ) [%]{1 ,}
1 : male ,m, Male ,M, men , Men , males , Males−>male
1 : female , f , F , Fem , Female , women , Women , f ema les , Females
−>f em a l e
1−> t o t a l
2 : male ,m, Male ,M, men , Men , males , Males−>male p r e c
2 : female , f , F , Fem , Female , women , Women , Females , f e m a l e s
−>f em a l e p e r c
2−>f em a l e p e r c
+ Ge tPe rc
(\ d + ) [ ( ] { 1 , } ( \ d + [ . ] ∗ \ d ∗ ){1 ,}
1 : male ,m, Male ,M, Men , men , males , Males−>male
1 : female , f , F , Fem , Female , women , Women , f ema les , Females
−>f em a l e
1−> t o t a l
2 : male ,m, Male ,M, Men , men , males , Males−>male p e r c
2 : female , f , F , Fem , Female , women , Women , f ema les , Females
−>f em a l e p e r c
2−>f em a l e p e r c
+GetMale
Male : (\ d + ) [ ] [ ( ] ( \ d + ) [ % ] [ ) ]
1−>male
2−>male p e r c e n t
+GetFemale
Female : (\ d + ) [ ] [ ( ] ( \ d + ) [ % ] [ ) ]
1−>f em a l e
2−>f em a l e p e r c e n t
+GetNumPerc
(\ d + [ . ] \ d +)
1 : male ,m, Male ,M, men , Men , males , Males−>male p e r c
1 : female , f , Female , F , women , Fem , fem , Women , women , f ema les ,
Females−>f em a l e p e r c
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+GetNum
(\ d +)
1 : male ,m, Male ,M, men , Men , males , Males−>male
1 : female , f , Female , F , women , Fem , fem , women , Women , f ema les ,
Females−>f em a l e
1−>male
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Library of developed syntactic rules

Rules that were developed can be found in a row format at https://github.com/
nikolamilosevic86/TabInOut/tree/master/DefaultSintacticRules. In this
Appendix, some of the special characters are replaced, therefore we recommend use
of the rules from the stated link.

F.1 Syntactic rule for extracting single positive integer
value

+ S i n g l e I n t e g e r 1
( / d +)
1−>v a l u e

F.2 Syntactic rule for extracting single positive floating
point value

+ S i n g l e F l o a t 1
( / d + [\ . ]{0 , 1}\ d ∗ )
1−>v a l u e
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F.3 Syntactic rules for extracting positive statistical val-
ues (mean, median, standard deviation, ranges, per-
centages)

+GetMean1
(\ d +\ .∗\ d ∗ ) [ ? ]∗[\−−−−−−,]+(\d +\ .∗\ d ∗ ) [ ( ] ∗
(\ d +\ .∗\ d ∗ ) [ ? ]∗ [\pm ] [ ? ]∗ (\ d +\ .∗\ d ∗ ) [ ) ] ∗
1−>r a n g e m i n
2−>range max
3 : median , Median−>median
3−>mean
4−>SD
+GetMean2
(\ d +\ .∗\ d ∗ ) [ ? ]∗ [\pm ] [ ? ]∗ (\ d +\ .∗\ d ∗ ) [ ( ]∗ ( [ − ]
∗\d +\ .∗\ d ∗ ) [ ? ]{0,}[\−−−−−− ,]+[ ]∗ (\ d +\ .∗\ d ∗ ) [ ) ] ∗
1 : median , Median−>median
1−>mean
2−>SD
3−>r a n g e m i n
4−>range max
+GetMean4
(\ d +\ .∗\ d ∗ ) [ ? ] ∗ [ \ ( \ [ ] ( [ − ] ∗ \ d +\ .∗\ d ∗ ) [ ? ]{0 ,}
[\−−−−−−,]+[ ]{0 ,} ( [ − ]∗\ d +\ .∗\ d ∗ ) [ \ ) \ ] ] ∗
1 : median , Median−>median
1−>mean
2−>r a n g e m i n
3−>range max
+GetRange1
(\ d +\ .∗\ d ∗ ) [ ? ] ∗ [ ( \ [ ] ( [ − ] ∗ \ d +\ .∗\ d ∗ ) [ ? ]{0 ,}
[\−−−−−− ,]{1,}[? ]{0 ,} (\ d +\ .∗\ d ∗ )
1 : median , Median−>median
2−>r a n g e m i n
3−>range max
+GetRange2
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[ ( ] ( \ d +\ .∗\ d ∗ ) [ ? ]{0 ,}[\−−−− , ; ]{1 ,}[? ]{0 ,}
(\ d +\ .∗\ d ∗ ) [ ) ] [ ? ]∗ (\ d +\ .∗\ d ∗ )
1−>r a n g e m i n
2−>range max
3 : median , Median−>median
3−>mean
+GetRange21
(\ d +\ .∗\ d ∗ ) [ ? ]{0 ,}[\−−−− , ; ]{1 ,}[? ]{0 ,}
(\ d +\ .∗\ d ∗ ) [ , ? ] + (\ d +\ .∗\ d ∗ )
1−>r a n g e m i n
2−>range max
3−>mean
+GetRange3
(\ d +\ .∗\ d ∗ ) [ ? ]{0 ,1}[\−−−− ,; t o ]{1 ,} [ ? ]{0 ,}
(\ d +\ .∗\ d ∗ )
1−>r a n g e m i n
2−>range max
+GetMean6
(\ d +\ .∗\ d ∗ ) [ ? ( ] { 0 , } [ \pm]{1 ,} [ ? ]{0 ,}
(\ d +\ .∗\ d ∗ )
1 : median , Median−>median
1−>mean
2−>SD
+GetMean7
(\ d +\ .{0 ,}\ d ∗ ) [ ? ] { 0 , } [ ( ] ( \ d +\ .{0 ,}\ d ∗ ) [ ) ]
1 : median , Median−>median
1−>mean
2−>SD
+GetMean8
(\ d +\ .∗\ d ∗ )
1 : median , Median−>median
1−>mean
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F.4 Syntactic rules for extracting alternative values (case
of gender extraction)

+ G e tC omp lex Pa t t e r n
(\ d + ) [ ] ∗ [ ( ] ( \ d + [ . ] ∗ \ d ∗ ) [ ) / ] + (\ d + ) [ ] ∗ [ ( ]
(\ d + [ . ] ∗ \ d ∗ ) [ ) ]
1 : male ,m, Male ,M, men , Men , males , Males ; female , f , F ,
fem , Fem , women , Women , women , f ema les , Females−>male
1 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, men , Men , males , Males−>f em a l e
1−>male
2 : male ,m, Male ,M, men , Men , males , Males ; female , f , F ,
fem , Fem , women , Women , women , f ema les , Females−>male p e r c
2 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, men , Men , males , Males−>f em a l e p e r c
2−>male p e r c
3 : male ,m, Male ,M, men , Men , males , Males ; female ,
f , F , fem , Fem . women , Women , women , Females , f ema les−>f em a l e
3 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, men , Men , males , Males−>male
3−>f em a l e
4 : male ,m, Male ,M, men , Men , males , Males ; female , f , F ,
fem , Fem . women , Women , women , Females , f ema les−>f em a l e p e r c
4 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, men , Men , males , Males−>male p e r c
4−>f em a l e p e r c
+GetWithSymbols
(\ d + ) [ ] ∗ [Mm] [ ] ∗ [ ; , : / ] [ ]∗ (\ d + ) [ ] ∗ [ Ff ]
1−>male
2−>f em a l e
+GetWithSymbols2
(\ d + ) [ ] ∗ [ Ff ] [ ] ∗ [ ; , : / ] [ ]∗ (\ d + ) [ ] ∗ [Mm]
1−>f em a l e
2−>male
+ GetFemalePerc
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(\ d + [ . ] ∗ \ d ∗ ) [ ]∗ [%]+[ ] ∗ [ ( ] ( \ d + ) [ ) ]
1 : male , Male ,m,M, men , Men , males , Males−>male p e r c e n t
1 : Female , female , fem , F , f , Fem , women , Women , f ema les ,
Females−>f em a l e p e r c e n t
2 : male , Male ,m, men , Men , males , Males−>male
2 : Female , female , fem , F , f , Fem , women , Women , f ema les ,
Females−>f em a l e
+ G e t P e r c I n B r a c k e t s
(\ d ∗ [ , ]∗\ d + [ . ] ∗ \ d ∗ ) [ ] ∗ [ ( ] ( \ d + [ . ] ∗ \ d ∗ ) [ ) ]
1 : male ,m, Male ,M, men , Men , males , Males−>male
1 : female , f , F , fem , Fem , Female , women , Women , Females ,
f ema les−>f em a l e
2 : male ,m, Male ,M, men , Men , males , Males−>male p e r c
2 : female , f , F , fem , Fem , Female , women , Women , f ema les ,
Females−>f em a l e p e r c
+ GetMaleFemale1Perc
(\ d + [ . ] \ d + ) [ / : \ , ]{1 ,} (\ d + [ . ] \ d +)
1 : male ,m, Male ,M, men , Men , males , Males ; female , f , F ,
fem , Fem . women , Women , women , Females , f ema les−>male p e r c
1 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, men , Men , males , Males−>f em a l e p e r c
1−>male p e r c
2 : male ,m, Male ,M, men , Men , males , Males ; female , f , F ,
fem , Fem , women , Women , women , f ema les , Females−>f em a l e p e r c
2 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, men , Men , males , males−>male p e r c
2−>f em a l e p e r c
+GetPercWOBrackets
(\ d + ) [ ]{1 ,} (\ d + [ . ] ∗ \ d ∗ ) [%]
1 : male , Male ,m,M, men , Men , males , Males−>male
1 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females−>f em a l e
1−>male
2 : male , Male ,m,M, men , Men , males , Males−>male p e r c
2 : female , Female , f , F , fem , Fem , women , Women , Females ,
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f ema les−>f em a l e p e r c
2−>f em a l e p e r c
+GetMaleFemaleRule
(\ d + ) [ / : , ]{1 ,} (\ d +)
1 : male ,m, Male ,M, men , Men , males , Males ; female , f , F ,
fem , Fem , women , Women , f ema les , Females−>male
1 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, Men , men , males , Males−>f em a l e
1−>male
2 : male ,m, Male ,M, men , Men , males , Males ; female , f , F ,
fem , Fem , women , Women , Females , f ema les−>f em a l e
2 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, Men , men , males , males−>male
2−>f em a l e
+GetMaleFromTxt
Male : [ ] ( \ d + ) [ ( ] + ( \ d +)[%]
1−>male
2−>male p e r c
+GetFemaleFromTxt
Female [ : ] [ ] ( \ d + ) [ ( ] + ( \ d +)[%]
1−>f em a l e
2−>f em a l e p e r c
+ GetMaleFemalePerc
(\ d + [ . ] ∗ \ d ∗ ) [ / : , ]{1 ,} (\ d + [ . ] ∗ \ d ∗ )
1 : male ,m, Male ,M, Men , men , males , Males ; female , f , F ,
fem , Fem , women , Women , f ema les , Females−>male p e r c
1 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, Men , men , males , Males−>f em a l e p e r c
1−>male p e r c
2 : male ,m, Male ,M, Men , men , males , Males ; female , f , F ,
fem , Fem , women , Women , f ema les , Females−>f em a l e p e r c
2 : female , Female , f , F , fem , Fem , women , Women , f ema les ,
Females ; male ,m, Male ,M, men , Men , males , Males−>male p e r c
2−>f em a l e p e r c
+GetMaleFemale2
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(\ d + ) [ ( ] { 1 , } ( \ d + [ . ] ∗ \ d ∗ ) [%]{1 ,}
1 : male ,m, Male ,M, men , Men , males , Males−>male
1 : female , f , F , Fem , Female , women , Women , f ema les ,
Females−>f em a l e
1−> t o t a l
2 : male ,m, Male ,M, men , Men , males , Males−>male p r e c
2 : female , f , F , Fem , Female , women , Women , Females ,
f ema les−>f em a l e p e r c
2−>f em a l e p e r c
+ Ge tPe rc
(\ d + ) [ ( ] { 1 , } ( \ d + [ . ] ∗ \ d ∗ ){1 ,}
1 : male ,m, Male ,M, Men , men , males , Males−>male
1 : female , f , F , Fem , Female , women , Women , f ema les ,
Females−>f em a l e
1−> t o t a l
2 : male ,m, Male ,M, Men , men , males , Males−>male p e r c
2 : female , f , F , Fem , Female , women , Women , f ema les ,
Females−>f em a l e p e r c
2−>f em a l e p e r c
+GetMale
Male : (\ d + ) [ ] [ ( ] ( \ d + ) [ % ] [ ) ]
1−>male
2−>male p e r c e n t
+GetFemale
Female : (\ d + ) [ ] [ ( ] ( \ d + ) [ % ] [ ) ]
1−>f em a l e
2−>f em a l e p e r c e n t
+GetNumPerc
(\ d + [ . ] \ d +)
1 : male ,m, Male ,M, men , Men , males , Males−>male p e r c
1 : female , f , Female , F , women , Fem , fem , Women , women ,
f ema les , Females−>f em a l e p e r c
+GetNum
(\ d +)
1 : male ,m, Male ,M, men , Men , males , Males−>male
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1 : female , f , Female , F , women , Fem , fem , women , Women ,
f ema les , Females−>f em a l e
1−>male


